Generator ranges of MOS: Difference between revisions
m wikify MOS |
No edit summary |
||
Line 1: | Line 1: | ||
Below are ranges of generators for various L-s patterns of [[MOS scale]]s, with the number of steps in the scale from 2 to 29. The ranges are given in fractions of the interval of equivalence, which is normally an octave. The tables give the range of possible generators in the second column, normalized so that the lower end of the range is where L/s = 1 (Nedo). The third column gives the midpoint of the range. Finally, the fourth column gives the boundaries of propriety, maximum expressiveness and diatonicity. | Below are ranges of generators for various L-s patterns of [[MOS scale]]s, with the number of steps in the scale from 2 to 29. The ranges are given in fractions of the interval of equivalence, which is normally an octave. The tables give the range of possible generators in the second column, normalized so that the lower end of the range is where L/s = 1 (Nedo). The third column gives the midpoint of the range. Finally, the fourth column gives the boundaries of propriety, maximum expressiveness and diatonicity. | ||
If the number of the [[Interval_class|generic interval]] to which the generator g belongs is C, and there are N scale steps to the interval of equivalence, then the average the size of an interval in class C is C/N. We have normalized so that C/N is the lower bound of the range of generators; since therefore g > C/N, g is larger than average and hence is the larger of the two sizes of intervals in its class, which means we have normalized to the [[Modal_UDP_Notation|chroma-positive]] generator. We have normalized to the formula | If the number of the [[Interval_class|generic interval]] to which the generator g belongs is C, and there are N scale steps to the interval of equivalence, then the average the size of an interval in class C is C/N. We have normalized so that C/N is the lower bound of the range of generators; since therefore g > C/N, g is larger than average and hence is the larger of the two sizes of intervals in its class, which means we have normalized to the [[Modal_UDP_Notation|chroma-positive]] generator. We have normalized to the formula for the step size where the leading term is positive. | ||
=2, 3, 4= | =2, 3, 4= | ||
Line 59: | Line 59: | ||
=5= | =5= | ||
'''Note: italicized generators from here below generate scales which are weakly tonal''' | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 72: | Line 72: | ||
| | 4\5 < g < 1 | | | 4\5 < g < 1 | ||
| | g = 9\10 | | | g = 9\10 | ||
| | g = 5\6, 6\7, 7\8 | | | g = ''5\6'', 6\7, 7\8 | ||
| | 4g-3 | | | 4g-3 | ||
| | 1-g | | | 1-g | ||
Line 112: | Line 112: | ||
| | 5\6 < g < 1 | | | 5\6 < g < 1 | ||
| | g = 11\12 | | | g = 11\12 | ||
| | g = 6\7, 7\8, 8\9 | | | g = ''6\7'', 7\8, 8\9 | ||
| | 5g-4 | | | 5g-4 | ||
| | 1-g | | | 1-g | ||
Line 159: | Line 159: | ||
| | 6\7 < g < 1 | | | 6\7 < g < 1 | ||
| | g = 13\14 | | | g = 13\14 | ||
| | g = 7\8, 8\9, 9\10 | | | g = ''7\8'', 8\9, 9\10 | ||
| | 6g-5 | | | 6g-5 | ||
| | 1-g | | | 1-g | ||
Line 213: | Line 213: | ||
| | 7\8 < g < 1 | | | 7\8 < g < 1 | ||
| | g = 15\16 | | | g = 15\16 | ||
| | g = | | | g = I, 9\10, 10\11 | ||
| | 7g-6 | | | 7g-6 | ||
| | 1-g | | | 1-g | ||
Line 261: | Line 261: | ||
=9= | =9= | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 275: | Line 273: | ||
| | 8\9 < g < 1 | | | 8\9 < g < 1 | ||
| | g = 17\18 | | | g = 17\18 | ||
| | g = ''9\10'', 10\11, 11\12 | | | g = ''9\10'', ''10\11'', 11\12 | ||
| | 8g-7 | | | 8g-7 | ||
| | 1-g | | | 1-g | ||
Line 282: | Line 280: | ||
| | 4\9 < g < 1\2 | | | 4\9 < g < 1\2 | ||
| | g = 17\36 | | | g = 17\36 | ||
| | g = 5\11, 6\13, 7\15 | | | g = ''5\11'', 6\13, 7\15 | ||
| | 7g-3 | | | 7g-3 | ||
| | 1-2g | | | 1-2g | ||
Line 343: | Line 341: | ||
| | 9\10 < g < 1 | | | 9\10 < g < 1 | ||
| | g = 19\20 | | | g = 19\20 | ||
| | g = ''10\11'', 11\12, 12\13 | | | g = ''10\11'', ''11\12'', 12\13 | ||
| | 9g-8 | | | 9g-8 | ||
| | 1-g | | | 1-g | ||
Line 350: | Line 348: | ||
| | 4\10 < g < 1\2 | | | 4\10 < g < 1\2 | ||
| | g = 9\20 | | | g = 9\20 | ||
| | g = 5\12, 6\14, 7\16 | | | g = ''5\12'', 6\14, 7\16 | ||
| | 4g-3\2 | | | 4g-3\2 | ||
| | 1\2-g | | | 1\2-g | ||
Line 418: | Line 416: | ||
| | 10\11 < g < 1 | | | 10\11 < g < 1 | ||
| | g = 21\22 | | | g = 21\22 | ||
| | g = ''11\12'', 12\13, 13\14 | | | g = ''11\12'', ''12\13'', 13\14 | ||
| | 10g-9 | | | 10g-9 | ||
| | 1-g | | | 1-g | ||
Line 425: | Line 423: | ||
| | 5\11 < g < 1\2 | | | 5\11 < g < 1\2 | ||
| | g = 21\44 | | | g = 21\44 | ||
| | g = 6\13, 7\15, 8\17 | | | g = ''6\13'', 7\15, 8\17 | ||
| | 9g-4 | | | 9g-4 | ||
| | 1-2g | | | 1-2g | ||
Line 589: | Line 587: | ||
| | 12\13 < g < 1 | | | 12\13 < g < 1 | ||
| | g = 25\26 | | | g = 25\26 | ||
| | g = | | | ''g = 13\14, 14\15, 15\16'' | ||
| | 12g-11 | | | 12g-11 | ||
| | 1-g | | | 1-g | ||
Line 603: | Line 601: | ||
| | 4\13 < g < 1\3 | | | 4\13 < g < 1\3 | ||
| | g = 25\78 | | | g = 25\78 | ||
| | g = 5\16, 6\19, 7/22 | | | g = ''5\16'', 6\19, 7/22 | ||
| | 10g-3 | | | 10g-3 | ||
| | 1-3g | | | 1-3g | ||
Line 685: | Line 683: | ||
| | 13\14 < g < 1 | | | 13\14 < g < 1 | ||
| | g = 27\28 | | | g = 27\28 | ||
| | g = | | | ''g = 14\15, 15\16, 16\17'' | ||
| | 13g-12 | | | 13g-12 | ||
| | 1-g | | | 1-g | ||
Line 699: | Line 697: | ||
| | 9\14 < g < 2\3 | | | 9\14 < g < 2\3 | ||
| | g = 55\84 | | | g = 55\84 | ||
| | g = 11\17, 13\20, 15\23 | | | g = ''11\17'', 13\20, 15\23 | ||
| | 11g-7 | | | 11g-7 | ||
| | 2-3g | | | 2-3g | ||
Line 788: | Line 786: | ||
| | 14\15 < g < 1 | | | 14\15 < g < 1 | ||
| | g = 29\30 | | | g = 29\30 | ||
| | g = | | | ''g = 15\16, 16\17, 17\18'' | ||
| | 14g-13 | | | 14g-13 | ||
| | 1-g | | | 1-g | ||
Line 802: | Line 800: | ||
| | 4\15 < g < 1\3 | | | 4\15 < g < 1\3 | ||
| | g = 9\30 | | | g = 9\30 | ||
| | g = 5\18, 6\21, 7\24 | | | g = ''5\18'', 6\21, 7\24 | ||
| | 4g-1 | | | 4g-1 | ||
| | 1\3-g | | | 1\3-g | ||
Line 898: | Line 896: | ||
| | 15\16 < g < 1 | | | 15\16 < g < 1 | ||
| | g = 31\32 | | | g = 31\32 | ||
| | g = | | | ''g = 16\17, 17\18, 18\19'' | ||
| | 15g-14 | | | 15g-14 | ||
| | 1-g | | | 1-g | ||
Line 912: | Line 910: | ||
| | 5\16 < g < 1\3 | | | 5\16 < g < 1\3 | ||
| | g = 31\96 | | | g = 31\96 | ||
| | g = 6\19, 7\22, 8\25 | | | g = ''6\19'', 7\22, 8\25 | ||
| | 13g-4 | | | 13g-4 | ||
| | 1-3g | | | 1-3g | ||
Line 1,015: | Line 1,013: | ||
| | 16\17 < g < 1 | | | 16\17 < g < 1 | ||
| | g = 33\34 | | | g = 33\34 | ||
| | g = | | | ''g = 17\18, 18\19, 19\20'' | ||
| | 16g-15 | | | 16g-15 | ||
| | 1-g | | | 1-g | ||
Line 1,022: | Line 1,020: | ||
| | 8\17 < g < 1\2 | | | 8\17 < g < 1\2 | ||
| | g = 33\68 | | | g = 33\68 | ||
| | g = ''9\19'', 10\21, 11\23 | | | g = ''9\19'', ''10\21'', 11\23 | ||
| | 15g-7 | | | 15g-7 | ||
| | 1-2g | | | 1-2g | ||
Line 1,029: | Line 1,027: | ||
| | 11\17 < g < 2\3 | | | 11\17 < g < 2\3 | ||
| | g = 67\102 | | | g = 67\102 | ||
| | g = 13\20, 15\23, 17\26 | | | g = ''13\20'', 15\23, 17\26 | ||
| | 14g-9 | | | 14g-9 | ||
| | 2-3g | | | 2-3g | ||
Line 1,036: | Line 1,034: | ||
| | 4\17 < g < 1\4 | | | 4\17 < g < 1\4 | ||
| | g = 33\136 | | | g = 33\136 | ||
| | g = 5\21, 6\25, 7\29 | | | g = ''5\21'', 6\25, 7\29 | ||
| | 13g-3 | | | 13g-3 | ||
| | 1-4g | | | 1-4g | ||
Line 1,139: | Line 1,137: | ||
| | 17\18 < g < 1 | | | 17\18 < g < 1 | ||
| | g = 35\36 | | | g = 35\36 | ||
| | g = | | | ''g = 18\19, 19\20, 20\21'' | ||
| | 17g-16 | | | 17g-16 | ||
| | 1-g | | | 1-g | ||
Line 1,146: | Line 1,144: | ||
| | 8\18 < g < 1\2 | | | 8\18 < g < 1\2 | ||
| | g = 17\36 | | | g = 17\36 | ||
| | g | | | g = ''9\20'', ''10\22'', 11\24 | ||
| | 8g-7\2 | | | 8g-7\2 | ||
| | 1\2-g | | | 1\2-g | ||
Line 1,160: | Line 1,158: | ||
| | <span style="line-height: 15.6000003814697px;">4\18 < g < 1\4</span> | | | <span style="line-height: 15.6000003814697px;">4\18 < g < 1\4</span> | ||
| | g = 17\72 | | | g = 17\72 | ||
| | <span style="line-height: 15.6000003814697px;">g = 5\22, 6\26,</span> 7\30 | | | <span style="line-height: 15.6000003814697px;">g = ''5\22'', 6\26,</span> 7\30 | ||
| | 7g-3\2 | | | 7g-3\2 | ||
| | 1\2-2g | | | 1\2-2g | ||
Line 1,264: | Line 1,262: | ||
! | <span style="background-color: #ffffff;">Midpoint</span> | ! | <span style="background-color: #ffffff;">Midpoint</span> | ||
! | Boundaries of propriety, maximum expressiveness, diatonicity | ! | Boundaries of propriety, maximum expressiveness, diatonicity | ||
! | Large step | ! |Large step+Small step | ||
|- | |- | ||
| | 1L18s | | | 1L18s | ||
| | 18\19 < g < 1 | | | 18\19 < g < 1 | ||
| | g = 37\38 | | | g = 37\38 | ||
| | g = | | | ''g = 19\20, 20\21, 21\22'' | ||
| | 18g-17 | | |18g-17+1-g = 17g-16 | ||
|- | |- | ||
| | 2L17s | | | 2L17s | ||
| | 9\19 < g < 1\2 | | | 9\19 < g < 1\2 | ||
| | g = 37\76 | | | g = 37\76 | ||
| | g = ''10\21'', 11\23, 12\25 | | | g = ''10\21'', ''11\23'', 12\25 | ||
| | 17g-8 | | |17g-8+1-2g = 15g-7 | ||
|- | |- | ||
| | 3L16s | | | 3L16s | ||
Line 1,285: | Line 1,280: | ||
| | g = 37\114 | | | g = 37\114 | ||
| | g = ''7\22'', 8\25, 10\31 | | | g = ''7\22'', 8\25, 10\31 | ||
| | 16g-5 | | |16g-5+1-3g = 13g-4 | ||
|- | |- | ||
| | 4L15s | | | 4L15s | ||
| | 14\19 < g < 3\4 | | | 14\19 < g < 3\4 | ||
| | g = 113\152 | | | g = 113\152 | ||
| | g = 17\23, 20\27, 23\31 | | | g = ''17\23'', 20\27, 23\31 | ||
| | 15g-11 | | |15g-11+3-4g = 11g-8 | ||
|- | |- | ||
| | 5L14s | | | 5L14s | ||
Line 1,299: | Line 1,292: | ||
| | g = 151\190 | | | g = 151\190 | ||
| | g = 19\24, 23\29, 27\34 | | | g = 19\24, 23\29, 27\34 | ||
| | 14g-11 | | |14g-11+4-5g = 9g-7 | ||
|- | |- | ||
| | 6L13s | | | 6L13s | ||
Line 1,306: | Line 1,298: | ||
| | g = 37\228 | | | g = 37\228 | ||
| | g = 4\25, 5\31, 6/37 | | | g = 4\25, 5\31, 6/37 | ||
| | 13g-2 | | |13g-2+1-6g = 7g-1 | ||
|- | |- | ||
| | 7L12s | | | 7L12s | ||
Line 1,313: | Line 1,304: | ||
| | g = 113\266 | | | g = 113\266 | ||
| | g = 11\26, 14\33, 17\40 | | | g = 11\26, 14\33, 17\40 | ||
| | 12g-5 | | |12g-5+3-7g = 5g-2 | ||
|- | |- | ||
| | 8L11s | | | 8L11s | ||
Line 1,320: | Line 1,310: | ||
| | g = 113\304 | | | g = 113\304 | ||
| | g = 10\27, 13\35, 16\43 | | | g = 10\27, 13\35, 16\43 | ||
| | 11g-4 | | |11g-4+3-8g = 3g-1 | ||
|- | |- | ||
| | 9L10s | | | 9L10s | ||
Line 1,327: | Line 1,316: | ||
| | g = 37\342 | | | g = 37\342 | ||
| | g = 3\28, 4\37, 5\46 | | | g = 3\28, 4\37, 5\46 | ||
| | 10g-1 | | |10g-1+1-9g = g | ||
|- | |- | ||
| | 10L9s | | | 10L9s | ||
Line 1,334: | Line 1,322: | ||
| | g = 341\380 | | | g = 341\380 | ||
| | g = 26\29, 35\39, 44\49 | | | g = 26\29, 35\39, 44\49 | ||
| | 9g-8 | | |9g-8+9-10g = 1-g | ||
|- | |- | ||
| | 11L8s | | | 11L8s | ||
Line 1,341: | Line 1,328: | ||
| | g = 265\418 | | | g = 265\418 | ||
| | g = 19\30, 26\41, 33\52 | | | g = 19\30, 26\41, 33\52 | ||
| | 8g-5 | | |8g-5+7-11g = 2-3g | ||
|- | |- | ||
| | 12L7s | | | 12L7s | ||
Line 1,348: | Line 1,334: | ||
| | g = 265\456 | | | g = 265\456 | ||
| | g = 18\31, 25\43, 32\55 | | | g = 18\31, 25\43, 32\55 | ||
| | 7g-4 | | |7g-4+7-12g = 3-5g | ||
|- | |- | ||
| | 13L6s | | | 13L6s | ||
Line 1,355: | Line 1,340: | ||
| | g = 417\494 | | | g = 417\494 | ||
| | g = 27\32, 38\45, 49\58 | | | g = 27\32, 38\45, 49\58 | ||
| | 6g-5 | | |6g-5+11-13g = 6-7g | ||
|- | |- | ||
| | 14L5s | | | 14L5s | ||
Line 1,362: | Line 1,346: | ||
| | g = 113\532 | | | g = 113\532 | ||
| | g = 7\33, 10\47, 13\61 | | | g = 7\33, 10\47, 13\61 | ||
| | 5g-1 | | |5g-1+3-14g = 2-9g | ||
|- | |- | ||
| | 15L4s | | | 15L4s | ||
Line 1,369: | Line 1,352: | ||
| | g = 151\570 | | | g = 151\570 | ||
| | g = 9\34, 13\49, 17\64 | | | g = 9\34, 13\49, 17\64 | ||
| | 4g-1 | | |4g-1+4-15g = 3-11g | ||
|- | |- | ||
| | 16L3s | | | 16L3s | ||
Line 1,376: | Line 1,358: | ||
| | g = 417\608 | | | g = 417\608 | ||
| | g = 24\35, 35\51, 46\67 | | | g = 24\35, 35\51, 46\67 | ||
| | 3g-2 | | |3g-2+11-16g = 9-13g | ||
|- | |- | ||
| | 17L2s | | | 17L2s | ||
Line 1,383: | Line 1,364: | ||
| | g = 341\646 | | | g = 341\646 | ||
| | g = 19\36, 28\53, 37\70 | | | g = 19\36, 28\53, 37\70 | ||
| | 2g-1 | | |2g-1+9-17g = 8-15g | ||
|- | |- | ||
| | 18L1s | | | 18L1s | ||
Line 1,390: | Line 1,370: | ||
| | g = 37\684 | | | g = 37\684 | ||
| | g = 2\37, 3\55, 4\73 | | | g = 2\37, 3\55, 4\73 | ||
| | g | | |g+1-18g = 1-17g | ||
|} | |} | ||
Line 1,408: | Line 1,387: | ||
| | 19\20 < g < 1 | | | 19\20 < g < 1 | ||
| | g = 39\40 | | | g = 39\40 | ||
| | g = | | | ''g = 20\21, 21\22, 22\23'' | ||
| | 19g-18 | | | 19g-18 | ||
| | 1-g | | | 1-g | ||
Line 1,415: | Line 1,394: | ||
| | 9\20 < g < 1\2 | | | 9\20 < g < 1\2 | ||
| | g = 19\40 | | | g = 19\40 | ||
| | g = ''10\22'', 11\24, 12\26 | | | g = ''10\22'', ''11\24'', 12\26 | ||
| | 9g-4 | | | 9g-4 | ||
| | 1\2-g | | | 1\2-g | ||
Line 1,429: | Line 1,408: | ||
| | 4\20 < g < 1\4 | | | 4\20 < g < 1\4 | ||
| | g = 9\40 | | | g = 9\40 | ||
| | g = 5\24, 6\28, 7\32 | | | g = ''5\24'', 6\28, 7\32 | ||
| | 4g-3\4 | | | 4g-3\4 | ||
| | 1\4-g | | | 1\4-g | ||
Line 1,553: | Line 1,532: | ||
| | 20\21 < g < 1 | | | 20\21 < g < 1 | ||
| | g = 41\42 | | | g = 41\42 | ||
| | g = | | | ''g = 21\22, 22\23, 23\24'' | ||
| | 20g-19 | | | 20g-19 | ||
| | 1-g | | | 1-g | ||
Line 1,581: | Line 1,560: | ||
| | 4\21 < g < 1\5 | | | 4\21 < g < 1\5 | ||
| | g = 41\210 | | | g = 41\210 | ||
| | g = 5\26, 6\31, 7\36 | | | g = ''5\26'', 6\31, 7\36 | ||
| | 16g-3 | | | 16g-3 | ||
| | 1-5g | | | 1-5g | ||
Line 1,699: | Line 1,678: | ||
! | <span style="background-color: #ffffff; color: #000000;">Midpoint</span> | ! | <span style="background-color: #ffffff; color: #000000;">Midpoint</span> | ||
! | Boundaries of propriety, maximum expressiveness, diatonicity | ! | Boundaries of propriety, maximum expressiveness, diatonicity | ||
! | Large step | ! |Large step+Small step | ||
|- | |- | ||
| | 1L21s | | | 1L21s | ||
| | 21\22 < g < 1 | | | 21\22 < g < 1 | ||
| | g = 43\44 | | | g = 43\44 | ||
| | g = | | | ''g = 22\23, 23\24, 24/25'' | ||
| | 21g-20 | | |21g-20+1-g = 20g-19 | ||
|- | |- | ||
| | 2L20s | | | 2L20s | ||
Line 1,713: | Line 1,690: | ||
| | g = 21\44 | | | g = 21\44 | ||
| | g = ''11\24,'' ''12\26'', 13\28 | | | g = ''11\24,'' ''12\26'', 13\28 | ||
| | 10g-9\2 | | |10g-9\2+1\2-g = 9g-4 | ||
|- | |- | ||
| | 3L19s | | | 3L19s | ||
Line 1,720: | Line 1,696: | ||
| | g = 43\132 | | | g = 43\132 | ||
| | g = ''8\25'', 9\28, 10\31 | | | g = ''8\25'', 9\28, 10\31 | ||
| | 19g-6 | | |19g-6+1-3g = 16g-5 | ||
|- | |- | ||
| | 4L18s | | | 4L18s | ||
Line 1,727: | Line 1,702: | ||
| | g = 21\88 | | | g = 21\88 | ||
| | g = ''6\26'', 7\30, 8\34 | | | g = ''6\26'', 7\30, 8\34 | ||
| | 9g-2 | | |9g-2+1\2-2g = 7g-3\2 | ||
|- | |- | ||
| | 5L17s | | | 5L17s | ||
| | 13\22 < g < 3\5 | | | 13\22 < g < 3\5 | ||
| | g = 131\220 | | | g = 131\220 | ||
| | g = 16\27, 19\32, 22\37 | | | g = ''16\27'', 19\32, 22\37 | ||
| | 17g-10 | | |17g-10+3-5g = 12g-7 | ||
|- | |- | ||
| | 6L16s | | | 6L16s | ||
Line 1,741: | Line 1,714: | ||
| | g = 43\132 | | | g = 43\132 | ||
| | g = 9\28, 11\34, 13\40 | | | g = 9\28, 11\34, 13\40 | ||
| | 8g-5\2 | | |8g-5\2+1-3g = 5g-2 | ||
|- | |- | ||
| | 7L15s | | | 7L15s | ||
Line 1,748: | Line 1,720: | ||
| | g = 43\308 | | | g = 43\308 | ||
| | g = 4\29, 5\36, 6\43 | | | g = 4\29, 5\36, 6\43 | ||
| | 15g-2 | | |15g-2+1-7g = 8g-1 | ||
|- | |- | ||
| | 8L14s | | | 8L14s | ||
Line 1,755: | Line 1,726: | ||
| | g = 65\176 | | | g = 65\176 | ||
| | g = 11\30, 14\38, 17\46 | | | g = 11\30, 14\38, 17\46 | ||
| | 7g-5\2 | | |7g-5\2+3\2-4g = 3g-2 | ||
|- | |- | ||
| | 9L13s | | | 9L13s | ||
Line 1,762: | Line 1,732: | ||
| | g = 307\396 | | | g = 307\396 | ||
| | g = 24\31, 31\40, 38\49 | | | g = 24\31, 31\40, 38\49 | ||
| | 13g-10 | | |13g-10+7-9g = 4g-3 | ||
|- | |- | ||
| | 10L12s | | | 10L12s | ||
Line 1,769: | Line 1,738: | ||
| | g = 21\220 | | | g = 21\220 | ||
| | g = 3\32, 4\42, 5\52 | | | g = 3\32, 4\42, 5\52 | ||
| | 6g-1\2 | | |6g-1\2+1\2-5g = g | ||
|- | |- | ||
| | 11L11s | | | 11L11s | ||
Line 1,776: | Line 1,744: | ||
| | g = 3\44 | | | g = 3\44 | ||
| | g = 2\33, 3\44, 4\55 | | | g = 2\33, 3\44, 4\55 | ||
| | g | | |g + 1\11-g = 1\11 | ||
|- | |- | ||
| | 12L10s | | | 12L10s | ||
Line 1,783: | Line 1,750: | ||
| | g = 109\264 | | | g = 109\264 | ||
| | g = 14\34, 19\46, 24\58 | | | g = 14\34, 19\46, 24\58 | ||
| | 5g-2 | | |5g-2+5\2-6g = 1\2-g | ||
|- | |- | ||
| | 13L9s | | | 13L9s | ||
Line 1,790: | Line 1,756: | ||
| | g = 131\572 | | | g = 131\572 | ||
| | g = 8\35, 11\48, 14\61 | | | g = 8\35, 11\48, 14\61 | ||
| | 9g-2 | | |9g-2+3-13g = 1-4g | ||
|- | |- | ||
| | 14L8s | | | 14L8s | ||
Line 1,797: | Line 1,762: | ||
| | g = 43\308 | | | g = 43\308 | ||
| | g = 5\36, 7\50, 9\64 | | | g = 5\36, 7\50, 9\64 | ||
| | 4g-1\2 | | |4g-1\2+1-7g = 1\2-3g | ||
|- | |- | ||
| | 15L7s | | | 15L7s | ||
Line 1,804: | Line 1,768: | ||
| | g = 571\660 | | | g = 571\660 | ||
| | g = 32\37, 45\52, 58\67 | | | g = 32\37, 45\52, 58\67 | ||
| | 7g-6 | | |7g-6+13-15g = 7-8g | ||
|- | |- | ||
| | 16L6s | | | 16L6s | ||
Line 1,811: | Line 1,774: | ||
| | g = 65\352 | | | g = 65\352 | ||
| | g = 7\38, 10\54, 13\70 | | | g = 7\38, 10\54, 13\70 | ||
| | 3g-1\2 | | |3g-1\2+3\2-8g = 1-5g | ||
|- | |- | ||
| | 17L5s | | | 17L5s | ||
Line 1,818: | Line 1,780: | ||
| | g = 207\748 | | | g = 207\748 | ||
| | g = 16\39, 23\56, 30\73 | | | g = 16\39, 23\56, 30\73 | ||
| | 5g-2 | | |5g-2+7-17g = 5-12g | ||
|- | |- | ||
| | 18L4s | | | 18L4s | ||
Line 1,825: | Line 1,786: | ||
| | g = 109\396 | | | g = 109\396 | ||
| | g = 11\40, 16\58, 21\76 | | | g = 11\40, 16\58, 21\76 | ||
| | 2g-1\2 | | |2g-1\2+5\2-9g = 2-7g | ||
|- | |- | ||
| | 19L3s | | | 19L3s | ||
Line 1,832: | Line 1,792: | ||
| | g = 571\836 | | | g = 571\836 | ||
| | g = 28\41, 41\60, 54\79 | | | g = 28\41, 41\60, 54\79 | ||
| | 3g-2 | | |3g-2+13-19g = 11-16g | ||
|- | |- | ||
| | 20L2s | | | 20L2s | ||
Line 1,839: | Line 1,798: | ||
| | g = 21\440 | | | g = 21\440 | ||
| | g = 2\42, 3\62, 4\72 | | | g = 2\42, 3\62, 4\72 | ||
| | g | | |g+1\2-10g = 1\2-9g | ||
|- | |- | ||
| | 21L1s | | | 21L1s | ||
Line 1,846: | Line 1,804: | ||
| | g = 43\924 | | | g = 43\924 | ||
| | g = 2\43, 3\64, 4\85 | | | g = 2\43, 3\64, 4\85 | ||
| | g | | |g+1-21g = 1-20g | ||
|} | |} | ||
Line 1,864: | Line 1,821: | ||
| | <span style="line-height: 15.6000003814697px;">22\23 < g < 1</span> | | | <span style="line-height: 15.6000003814697px;">22\23 < g < 1</span> | ||
| | g = 45\46 | | | g = 45\46 | ||
| | g = | | | ''g = 23\24, 24\25, 25\26'' | ||
| | 22g-21 | | | 22g-21 | ||
| | 1-g | | | 1-g | ||
Line 1,892: | Line 1,849: | ||
| | 9\23 < g < 2\5 | | | 9\23 < g < 2\5 | ||
| | g = 91\230 | | | g = 91\230 | ||
| | g = 11\28, 13\33, 15\38 | | | g = ''11\28'', 13\33, 15\38 | ||
| | 18g-7 | | | 18g-7 | ||
| | 2-5g | | | 2-5g | ||
Line 2,030: | Line 1,987: | ||
| | 23\24 < g < 1 | | | 23\24 < g < 1 | ||
| | g = 47\48 | | | g = 47\48 | ||
| | g = | | | ''g = 24\25, 25\26, 26\27'' | ||
| | 23g-22 | | | 23g-22 | ||
| | 1-g | | | 1-g | ||
Line 2,203: | Line 2,160: | ||
| | 24\25 < g < 1 | | | 24\25 < g < 1 | ||
| | g = 49\50 | | | g = 49\50 | ||
| | g = | | | ''g = 25\26, 26\27, 27\28'' | ||
| | 24g-23 | | | 24g-23 | ||
| | 1-g | | | 1-g | ||
Line 2,210: | Line 2,167: | ||
| | 12\25 < g < 1\2 | | | 12\25 < g < 1\2 | ||
| | g = 49\100 | | | g = 49\100 | ||
| | g = | | | ''g = 13\27, 14\29, 15\31'' | ||
| | 23g-11 | | | 23g-11 | ||
| | 1-2g | | | 1-2g | ||
Line 2,217: | Line 2,174: | ||
| | 8\25 < g < 1\3 | | | 8\25 < g < 1\3 | ||
| | g = 49\150 | | | g = 49\150 | ||
| | g = ''9\28'', 10\31, 11\34 | | | g = ''9\28'', ''10\31'', 11\34 | ||
| | 22g-7 | | | 22g-7 | ||
| | 1-3g | | | 1-3g | ||
Line 2,238: | Line 2,195: | ||
| | 4\25 < g < 1\6 | | | 4\25 < g < 1\6 | ||
| | g = 49\300 | | | g = 49\300 | ||
| | g = 5\31, 6\37, 7\43 | | | g = ''5\31'', 6\37, 7\43 | ||
| | 19g-3 | | | 19g-3 | ||
| | 1-6g | | | 1-6g | ||
Line 2,383: | Line 2,340: | ||
| | 25\26 < g < 1 | | | 25\26 < g < 1 | ||
| | g = 51\52 | | | g = 51\52 | ||
| | g = | | | ''g = 26\27, 27\28, 28\29'' | ||
| | 25g-24 | | | 25g-24 | ||
| | 1-g | | | 1-g | ||
Line 2,390: | Line 2,347: | ||
| | 12\26 < g < 1\2 | | | 12\26 < g < 1\2 | ||
| | g = 25\52 | | | g = 25\52 | ||
| | g = | | | ''g = 13\28, 14\30, 15\32'' | ||
| | 12g-11\2 | | | 12g-11\2 | ||
| | 1\2-g | | | 1\2-g | ||
Line 2,397: | Line 2,354: | ||
| | 17\26 < g < 2\3 | | | 17\26 < g < 2\3 | ||
| | g = 103\156 | | | g = 103\156 | ||
| | g = ''19\29'', 21\32, 23\35 | | | g = ''19\29'', ''21\32'', 23\35 | ||
| | 23g-15 | | | 23g-15 | ||
| | 2-3g | | | 2-3g | ||
Line 2,418: | Line 2,375: | ||
| | 4\26 < g < 1\6 | | | 4\26 < g < 1\6 | ||
| | g = 25\156 | | | g = 25\156 | ||
| | g = 5\32, 6\38, 7\44 | | | g = ''5\32'', 6\38, 7\44 | ||
| | 10g-3\2 | | | 10g-3\2 | ||
| | 1\2-3g | | | 1\2-3g | ||
Line 2,570: | Line 2,527: | ||
| | 26\27 < g < 1 | | | 26\27 < g < 1 | ||
| | g = 53\54 | | | g = 53\54 | ||
| | <span style="line-height: 15.6000003814697px;">g = | | | <span style="line-height: 15.6000003814697px;">''g = 27\28,''</span> ''28\29, 29\30'' | ||
| | 26g-25 | | | 26g-25 | ||
| | 1-g | | | 1-g | ||
Line 2,577: | Line 2,534: | ||
| | 13\27 < g < 1\2 | | | 13\27 < g < 1\2 | ||
| | g = 53\108 | | | g = 53\108 | ||
| | g = | | | ''g = 14\29, 15\31, 16\33'' | ||
| | 25g-12 | | | 25g-12 | ||
| | 1-2g | | | 1-2g | ||
Line 2,584: | Line 2,541: | ||
| | 8\27 < g < 1\3 | | | 8\27 < g < 1\3 | ||
| | g = 17\54 | | | g = 17\54 | ||
| | g = ''9\30'', 10\33, 11\36 | | | g = ''9\30'', ''10\33'', 11\36 | ||
| | 8g-7\3 | | | 8g-7\3 | ||
| | 1-3g | | | 1-3g | ||
Line 2,605: | Line 2,562: | ||
| | 4\27 < g < 1\6 | | | 4\27 < g < 1\6 | ||
| | g = 17\108 | | | g = 17\108 | ||
| | g = 5\33, 6\39, 7\45 | | | g = ''5\33'', 6\39, 7\45 | ||
| | 7g-1 | | | 7g-1 | ||
| | 1\3-2g | | | 1\3-2g | ||
Line 2,764: | Line 2,721: | ||
| | 27\28 < g < 1 | | | 27\28 < g < 1 | ||
| | g = 55\56 | | | g = 55\56 | ||
| | g = | | | ''g = 28\29, 29\30, 30\31'' | ||
| | 27g-26 | | | 27g-26 | ||
| | 1-g | | | 1-g | ||
Line 2,771: | Line 2,728: | ||
| | 13\28 < g < 1\2 | | | 13\28 < g < 1\2 | ||
| | g = 27\56 | | | g = 27\56 | ||
| | g = | | | ''g = 14\30, 15\32, 16\34'' | ||
| | 13g-6 | | | 13g-6 | ||
| | 1\2-g | | | 1\2-g | ||
Line 2,778: | Line 2,735: | ||
| | 9\28 < g < 1\3 | | | 9\28 < g < 1\3 | ||
| | g = 55\168 | | | g = 55\168 | ||
| | g = ''10\31'',<span style="line-height: 15.6000003814697px;"> 11\34,</span> 12\37 | | | g = ''10\31'',<span style="line-height: 15.6000003814697px;"> ''11\34'',</span> 12\37 | ||
| | 25g-8 | | | 25g-8 | ||
| | 1-3g | | | 1-3g | ||
Line 2,799: | Line 2,756: | ||
| | 9\28 < g < 2\6 | | | 9\28 < g < 2\6 | ||
| | g = 55\168 | | | g = 55\168 | ||
| | g = 11\34, 13\40, 15\46 | | | g = ''11\34'', 13\40, 15\46 | ||
| | 11g-7\2 | | | 11g-7\2 | ||
| | 1-3g | | | 1-3g | ||
Line 2,965: | Line 2,922: | ||
| | 28\29 < g < 1 | | | 28\29 < g < 1 | ||
| | g = 57\58 | | | g = 57\58 | ||
| | g = | | | ''g = 29\30, 30\31, 31\32'' | ||
| | 28g-27 | | | 28g-27 | ||
| | 1-g | | | 1-g | ||
Line 2,972: | Line 2,929: | ||
| | 14\29 < g < 1\2 | | | 14\29 < g < 1\2 | ||
| | g = 57\116 | | | g = 57\116 | ||
| | g = | | | ''g = 15\31, 16\33, 17\35'' | ||
| | 27g-13 | | | 27g-13 | ||
| | 1-2g | | | 1-2g | ||
Line 2,979: | Line 2,936: | ||
| | 19\29 < g < 2\3 | | | 19\29 < g < 2\3 | ||
| | g = 115\174 | | | g = 115\174 | ||
| | g = ''21\32'', 23\35, 25\38 | | | g = ''21\32'', ''23\35'', 25\38 | ||
| | 26g-17 | | | 26g-17 | ||
| | 2-3g | | | 2-3g | ||
Line 3,000: | Line 2,957: | ||
| | 24\29 < g < 5\6 | | | 24\29 < g < 5\6 | ||
| | g = 289\348 | | | g = 289\348 | ||
| | g = 29\35, 34\41, 39\47 | | | g = ''29\35'', 34\41, 39\47 | ||
| | 23g-19 | | | 23g-19 | ||
| | 5-6g | | | 5-6g | ||
Line 3,007: | Line 2,964: | ||
| | 4\29 < g < 1\7 | | | 4\29 < g < 1\7 | ||
| | g = 57\406 | | | g = 57\406 | ||
| | g = 5\36, 6\43, 7\50 | | | g = ''5\36'', 6\43, 7\50 | ||
| | 22g-3 | | | 22g-3 | ||
| | 1-7g | | | 1-7g |
Revision as of 02:13, 23 June 2019
Below are ranges of generators for various L-s patterns of MOS scales, with the number of steps in the scale from 2 to 29. The ranges are given in fractions of the interval of equivalence, which is normally an octave. The tables give the range of possible generators in the second column, normalized so that the lower end of the range is where L/s = 1 (Nedo). The third column gives the midpoint of the range. Finally, the fourth column gives the boundaries of propriety, maximum expressiveness and diatonicity.
If the number of the generic interval to which the generator g belongs is C, and there are N scale steps to the interval of equivalence, then the average the size of an interval in class C is C/N. We have normalized so that C/N is the lower bound of the range of generators; since therefore g > C/N, g is larger than average and hence is the larger of the two sizes of intervals in its class, which means we have normalized to the chroma-positive generator. We have normalized to the formula for the step size where the leading term is positive.
2, 3, 4
Note: These sets are given for the sake of completeness as they are not really scales
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L1s | 1\2 < g < 1 | g = 3\4 | g = 2\3, 3\4, 4\5 | g | 1-g |
1L2s | 2\3 < g < 1 | g = 5\6 | g = 3\4, 4\5, 5\6 | 2g-1 | 1-g |
2L1s | 1\3 < g < 1\2 | g = 5\12 | g = 2\5, 3\7, 4\9 | g | 1-2g |
1L3s | 3\4 < g < 1 | g = 7\8 | g = 4\5, 5\6, 6\7 | 3g-2 | 1-g |
2L2s | 1\4 < g < 1\2 | g = 3\8 | g = 2\6, 3\8, 4\10 | g | 1\2-g |
3L1s | 1\4 < g < 1\3 | g = 7\24 | g = 2\7, 3\10, 4\13 | g | 1-3g |
5
Note: italicized generators from here below generate scales which are weakly tonal
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L4s | 4\5 < g < 1 | g = 9\10 | g = 5\6, 6\7, 7\8 | 4g-3 | 1-g |
2L3s | 2\5 < g < 1\2 | g = 9\20 | g = 3\7, 4\9, 5\11 | 3g-1 | 1-2g |
3L2s | 3\5 < g < 2\3 | g = 19\30 | g = 5\8, 7\11, 9\14 | 2g-1 | 2-3g |
4L1s | 1\5 < g < 1\4 | g = 9\40 | g = 2\9, 3\13, 4\17 | g | 1-4g |
6
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L5s | 5\6 < g < 1 | g = 11\12 | g = 6\7, 7\8, 8\9 | 5g-4 | 1-g |
2L4s | 2\6 < g < 1\2 | g = 5\12 | g = 3\8, 4\10, 5\12 | 2g-1\2 | 1\2-g |
3L3s | 1\6 < g < 1\3 | g = 3\12 | g = 2\9, 3\12, 4\15 | g | 1\3-g |
4L2s | 1\6 < g < 1\4 | g = 5\24 | g = 2\10, 3\14, 4\18 | g | 1\2-2g |
5L1s | 1\6 < g < 1\5 | g = 11\60 | g = 2\11, 3\16, 4\21 | g | 1-5g |
7
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L6s | 6\7 < g < 1 | g = 13\14 | g = 7\8, 8\9, 9\10 | 6g-5 | 1-g |
2L5s | 3\7 < g < 1\2 | g = 13\28 | g = 4\9, 5\11, 6\13 | 5g-2 | 1-2g |
3L4s | 2\7 < g < 1\3 | g = 13\42 | g = 3\10, 4\13, 5\16 | 4g-1 | 1-3g |
4L3s | 5\7 < g < 3\4 | g = 41\56 | g = 8\11, 11\15, 14\19 | 3g-2 | 3-4g |
5L2s | 4\7 < g < 3\5 | g = 41\70 | g = 7\12, 10\17, 13\22 | 2g-1 | 3-5g |
6L1s | 1\7 < g < 1\6 | g = 13\84 | g = 2\13, 3\19, 4\25 | g | 1-6g |
8
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L7s | 7\8 < g < 1 | g = 15\16 | g = I, 9\10, 10\11 | 7g-6 | 1-g |
2L6s | 3\8 < g < 1\2 | g = 7\16 | g = 4\10, 5\12, 6\14 | 3g-1 | 1\2-g |
3L5s | 5\8 < g < 2\3 | g = 31\48 | g = 7\11, 9\14, 11\17 | 5g-3 | 2-3g |
4L4s | 1\8 < g < 1\4 | g = 3\16 | g = 2\12, 3\16, 4\20 | g | 1\4-g |
5L3s | 3\8 < g < 2\5 | g = 31\80 | g = 5\13, 7\18, 9\23 | 3g-1 | 2-5g |
6L2s | 1\8 < g < 1\6 | g = 7\48 | g = 2\14, 3\20, 4\26 | g | 1\2-3g |
7L1s | 1\8 < g < 1\7 | g = 15\112 | g = 2\15, 3\22, 4\29 | g | 1-7g |
9
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L8s | 8\9 < g < 1 | g = 17\18 | g = 9\10, 10\11, 11\12 | 8g-7 | 1-g |
2L7s | 4\9 < g < 1\2 | g = 17\36 | g = 5\11, 6\13, 7\15 | 7g-3 | 1-2g |
3L6s | 2\9 < g < 1\3 | g = 5\18 | g = 3\12, 4\15, 5\18 | 2g-1\3 | 1\3-g |
4L5s | 2\9 < g < 1\4 | g = 17\72 | g = 3\13, 4\17, 5\21 | 5g-1 | 1-4g |
5L4s | 7\9 < g < 4\5 | g = 71\90 | g = 11\14, 15\19, 18\23 | 4g-3 | 4-5g |
6L3s | 1\9 < g < 1\6 | g = 5\36 | g = 2\15, 3\21, 4\27 | g | 1\3-2g |
7L2s | 5\9 < g < 4\7 | g = 71\126 | g = 9\16, 10\23, 17\30 | 2g-1 | 4-7g |
8L1s | 1\9 < g < 1\8 | g = 17\144 | g = 2\17, 3\25, 4\33 | g | 1-8g |
10
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L9s | 9\10 < g < 1 | g = 19\20 | g = 10\11, 11\12, 12\13 | 9g-8 | 1-g |
2L8s | 4\10 < g < 1\2 | g = 9\20 | g = 5\12, 6\14, 7\16 | 4g-3\2 | 1\2-g |
3L7s | 3\10 < g < 1\3 | g = 19\60 | g = 4\13, 5\16, 6\19 | 7g-2 | 1-3g |
4L6s | 2\10 < g < 1\4 | g = 9\40 | g = 3\14, 4\18, 5\22 | 3g-1\2 | 1\2-2g |
5L5s | 1\10 < g < 1\5 | g = 3\20 | g = 2\15, 3\20, 4\25 | g | 1\5-g |
6L4s | 3\10 < g < 2\6 | g = 19\60 | g = 5\16, 7\22, 9\28 | 2g-1\2 | 1-3g |
7L3s | 7\10 < g < 5\7 | g = 99\140 | g = 12\17, 17\24, 22\31 | 3g-2 | 5-7g |
8L2s | 1\10 < g < 1\8 | g = 9\80 | g = 2\18, 3\26, 4\34 | g | 1\2-4g |
9L1s | 1\10 < g < 1\9 | g = 19\180 | g = 2\19, 3\28, 4\37 | g | 1-9g |
11
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L10s | 10\11 < g < 1 | g = 21\22 | g = 11\12, 12\13, 13\14 | 10g-9 | 1-g |
2L9s | 5\11 < g < 1\2 | g = 21\44 | g = 6\13, 7\15, 8\17 | 9g-4 | 1-2g |
3L8s | 7\11 < g < 2\3 | g = 43\66 | g = 9\14, 11\17, 13\20 | 8g-5 | 2-3g |
4L7s | 8\11 < g < 3\4 | g = 65\88 | g = 11\15, 14\19, 17\23 | 7g-5 | 3-4g |
5L6s | 2\11 < g < 1\5 | g = 21\110 | g = 3\16, 4\21, 5\26 | 6g-1 | 1-5g |
6L5s | 9\11 < g < 5\6 | g = 109\132 | g = 14\17, 19\23, 24\29 | 5g-4 | 5-6g |
7L4s | 3\11 < g < 2\7 | g = 43\154 | g = 5\18, 7\25, 9\32 | 4g-1 | 2-7g |
8L3s | 4\11 < g < 3\8 | g = 65\176 | g = 7\19, 10\27, 13\35 | 3g-1 | 3-8g |
9L2s | 6\11 < g < 5\9 | g = 109\198 | g = 11\20, 16\29, 21\38 | 2g-1 | 5-9g |
10L1s | 1\11 < g < 1\10 | g = 21\220 | g = 2\21, 3\31, 4\41 | g | 1-10g |
12
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L11s | 11\12 < g < 1 | g = 23\24 | g = 12\13, 13\14, 14\15 | 11g-10 | 1-g |
2L10s | 5\12 < g < 1\2 | g = 11\24 | g = 6\14, 7\16, 8\18 | 5g-2 | 1\2-g |
3L9s | 3\12 < g < 1\3 | g = 7\24 | g = 4\15, 5\18, 6\21 | 3g-2\3 | 1\3-g |
4L8s | 2\12 < g < 1\4 | g = 5\24 | g = 3\16, 4\20, 5\24 | 2g-1\4 | 1\4-g |
5L7s | 7\12 < g < 3\5 | g = 71\120 | g = 10\17, 13\22, 16\27 | 7g-4 | 3-5g |
6L6s | 1\12 < g < 1\6 | g = 3\24 | g = 2\18, 3\24, 4\30 | g | 1\6-g |
7L5s | 5\12 < g < 3\7 | g = 71\168 | g = 8\19, 11\26, 14\33 | 5g-2 | 3-7g |
8L4s | 1\12 < g < 1\8 | g = 5\48 | g = 2\20, 3\28, 4\36 | g | 1\4-2g |
9L3s | 1\12 < g < 1\9 | g = 7\72 | g = 2\21, 3\30, 4\39 | g | 1\3-3g |
10L2s | 1\12 < g < 1\10 | g = 11\120 | g = 2\22, 3\32, 4\42 | g | 1\2-5g |
11L1s | 1\12 < g < 1\11 | g = 23\264 | g = 2\23, 3\34, 4\45 | g | 1-11g |
13
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L12s | 12\13 < g < 1 | g = 25\26 | g = 13\14, 14\15, 15\16 | 12g-11 | 1-g |
2L11s | 6\13 < g < 1\2 | g = 25\52 | g = 7\15, 8\17, 9\19 | 11g-5 | 1-2g |
3L10s | 4\13 < g < 1\3 | g = 25\78 | g = 5\16, 6\19, 7/22 | 10g-3 | 1-3g |
4L9s | 3\13 < g < 1\4 | g = 25\104 | g = 4\17, 5\21, 6\25 | 9g-2 | 1-4g |
5L8s | 5\13 < g < 2\5 | g = 51\130 | g = 7\18, 9\23, 11\28 | 8g-3 | 2-5g |
6L7s | 2\13 < g < 1\6 | g = 25\156 | g = 3\19, 4\25, 5\31 | 7g-1 | 1-6g |
7L6s | 11\13 < g < 6\7 | g = 155\182 | g = 17\20, 23\27, 29\34 | 6g-5 | 6-7g |
8L5s | 8\13 < g < 5\8 | g = 129\208 | g = 13\21, 18\29, 23\37 | 5g-3 | 5-8g |
9L4s | 10\13 < g < 7\9 | g = 181\234 | g = 17\22, 24\31, 31\40 | 4g-3 | 7-9g |
10L3s | 9\13 < g < 7\10 | g = 181\260 | g = 16\23, 23\33, 30\43 | 3g-2 | 7-10g |
11L2s | 7\13 < g < 6\11 | g = 155\286 | g = 13\24, 19\35, 25\46 | 2g-1 | 6-11g |
12L1s | 1\13 < g < 1\12 | g = 25\312 | g = 2\25, 3\37, 4\49 | g | 1-12g |
14
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L13s | 13\14 < g < 1 | g = 27\28 | g = 14\15, 15\16, 16\17 | 13g-12 | 1-g |
2L12s | 6\14 < g < 1\2 | g = 13\28 | g = 7\16, 8\18, 9\20 | 6g-5\2 | 1\2-g |
3L11s | 9\14 < g < 2\3 | g = 55\84 | g = 11\17, 13\20, 15\23 | 11g-7 | 2-3g |
4L10s | 3\14 < g < 1\4 | g = 13\56 | g = 4\18, 5\22, 6\26 | 5g-1 | 1\2-2g |
5L9s | 11\14 < g < 4\5 | g = 111\140 | g = 15\19, 19\24, 23\29 | 9g-7 | 4-5g |
6L8s | 2\14 < g < 1\6 | g = 13\84 | g = 3\20, 4\26, 5\32 | 4g-1\2 | 1\2-3g |
7L7s | 1\14 < g < 1\7 | g = 3\28 | g = 2\21, 3\28, 4\35 | g | 1\7-g |
8L6s | 5\14 < g < 3\8 | g = 41\112 | g = 8\22, 11\30, 14\38 | 3g-1 | 3\2-4g |
9L5s | 3\14 < g < 2\9 | g = 55\252 | g = 5\23, 7\32, 9\41 | 5g-1 | 2-9g |
10L4s | 4\14 < g < 3\10 | g = 41\140 | g = 7\24, 10\34, 13\44 | 2g-1\2 | 3\2-5g |
11L3s | 5\14 < g < 4\11 | g = 111\308 | g = 9\25, 13\36, 17\47 | 3g-1 | 4-11g |
12L2s | 1\14 < g < 1\12 | g = 13\168 | g = 2\26, 3\38, 4\50 | g | 1\2-6g |
13L1s | 1\14 < g < 1\13 | g = 27\364 | g = 2\27, 3\40, 4\53 | g | 1-13g |
15
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L14s | 14\15 < g < 1 | g = 29\30 | g = 15\16, 16\17, 17\18 | 14g-13 | 1-g |
2L13s | 7\15 < g < 1\2 | g = 29\60 | g = 8\17, 9\19, 10\21 | 13g-6 | 1-2g |
3L12s | 4\15 < g < 1\3 | g = 9\30 | g = 5\18, 6\21, 7\24 | 4g-1 | 1\3-g |
4L11s | 11\15 < g < 3\4 | g = 89\120 | g = 14\19, 17\23, 20\27 | 11g-8 | 3-4g |
5L10s | 2\15 < g < 1\5 | g = 5\30 | g = 3\20, 4\25, 5\30 | 2g-1\5 | 1\5-g |
6L9s | 2\15 < g < 1\6 | g = 9\60 | g = 3\21, 4\27, 5\33 | 3g-1\3 | 1\3-2g |
7L8s | 2\15 < g < 1\7 | g = 29\210 | g = 3\22, 4\29, 5\36 | 8g-1 | 1-7g |
8L7s | 13\15 < g < 7\8 | g = 209\240 | g = 20\23, 27\31, 34\39 | 7g-6 | 7-8g |
9L6s | 3\15 < g < 2\9 | g = 19\90 | g = 5\24, 7\33, 9\42 | 2g-1\3 | 2\3-3g |
10L5s | 1\15 < g < 1\10 | g = 5\60 | g = 2\25, 3\35, 4\45 | g | 1\5-2g |
11L4s | 4\15 < g < 3\11 | g = 89\330 | g = 7\26, 10\37, 13\48 | 4g-1 | 3-11g |
12L3s | 1\15 < g < 1\12 | g = 9\120 | g = 2\27, 3\39, 4\51 | g | 1\3-4g |
13L2s | 8\15 < g < 7\13 | g = 209\390 | g = 15\28, 22\41, 29\54 | 2g-1 | 7-13g |
14L1s | 1\15 < g < 1\14 | g = 29\420 | g = 2\29, 3\43, 4\57 | g | 1-14g |
16
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L15s | 15\16 < g < 1 | g = 31\32 | g = 16\17, 17\18, 18\19 | 15g-14 | 1-g |
2L14s | 7\16 < g < 1\2 | g = 15\32 | g = 8\18, 9\20, 10\22 | 7g-3 | 1\2-g |
3L13s | 5\16 < g < 1\3 | g = 31\96 | g = 6\19, 7\22, 8\25 | 13g-4 | 1-3g |
4L12s | 3\16 < g < 1\4 | g = 7\32 | g = 4\20, 5\24, 6\28 | 3g-1\2 | 1\4-g |
5L11s | 3\16 < g < 1\5 | g = 31\160 | g = 4\21, 5\26, 6\31 | 11g-2 | 1-5g |
6L10s | 5\16 < g < 2\6 | g = 31\96 | g = 7\22, 9\28, 11\34 | 5g-3\2 | 1-3g |
7L9s | 9\16 < g < 4\7 | g = 127\224 | g = 13\23, 17\30, 21\37 | 9g-5 | 4-7g |
8L8s | 1\16 < g < 1\8 | g = 3\32 | g = 2\24, 3\32, 4\40 | g | 1\8-g |
9L7s | 7\16 < g < 4\9 | g = 127\286 | g = 11\25, 15\34, 19\43 | 7g-3 | 4-9g |
10L6s | 3\16 < g < 2\10 | g = 31\160 | g = 5\26, 7\36, 8\46 | 3g-1\2 | 1-5g |
11L5s | 13\16 < g < 9\11 | g = 287\352 | g = 22\27, 31\38, 40\49 | 5g-4 | 9-11g |
12L4s | 1\16 < g < 1\12 | g = 7\48 | g = 2\28, 3\40, 4\52 | g | 1\4-3g |
13L3s | 11\16 < g < 9\13 | g = 287\416 | g = 20\29, 29\42, 38\55 | 3g-2 | 9-13g |
14L2s | 1\16 < g < 1\14 | g = 15\224 | g = 2\30, 3\44, 4\58 | g | 1\2-7g |
15L1s | 1\16 < g < 1\15 | g = 31\480 | g = 2\31, 3\46, 4\61 | g | 1-15g |
17
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L16s | 16\17 < g < 1 | g = 33\34 | g = 17\18, 18\19, 19\20 | 16g-15 | 1-g |
2L15s | 8\17 < g < 1\2 | g = 33\68 | g = 9\19, 10\21, 11\23 | 15g-7 | 1-2g |
3L14s | 11\17 < g < 2\3 | g = 67\102 | g = 13\20, 15\23, 17\26 | 14g-9 | 2-3g |
4L13s | 4\17 < g < 1\4 | g = 33\136 | g = 5\21, 6\25, 7\29 | 13g-3 | 1-4g |
5L12s | 10\17 < g < 3\5 | g = 101\170 | g = 13\22, 16\27, 19\32 | 12g-7 | 3-5g |
6L11s | 14\17 < g < 5\6 | g = 169\204 | g = 19\23, 24\29, 29\35 | 11g-9 | 5-6g |
7L10s | 12\17 < g < 5\7 | g = 169\238 | g = 17\24, 22\31, 27\38 | 10g-7 | 5-7g |
8L9s | 2\17 < g < 1\8 | g = 33\272 | g = 3\25, 4\33, 5\41 | 9g-1 | 1-8g |
9L8s | 15\17 < g < 8\9 | g = 271\306 | g = 23\26, 31\35, 39\44 | 8g-7 | 8-9g |
10L7s | 5\17 < g < 3\10 | g = 101\340 | g = 8\27, 11\37, 14\47 | 7g-2 | 3-10g |
11L6s | 3\17 < g < 2\11 | g = 67\374 | g = 5\28, 7\39, 9\50 | 6g-1 | 2-11g |
12L5s | 7\17 < g < 5\12 | g = 169\408 | g = 12\29, 17\41, 22\53 | 5g-2 | 5-12g |
13L4s | 13\17 < g < 10\13 | g = 339\442 | g = 23\30, 33\43, 43\56 | 4g-3 | 10-13g |
14L3s | 6\17 < g < 5\14 | g = 169\476 | g = 11\31, 16\45, 21\59 | 3g-1 | 5-14g |
15L2s | 9\17 < g < 8\15 | g = 271\510 | g = 17\32, 25\47, 33\62 | 2g-1 | 8-15g |
16L1s | 1\17 < g < 1\16 | g = 33\544 | g = 2\33, 3\49, 4\65 | g | 1-16g |
18
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L17s | 17\18 < g < 1 | g = 35\36 | g = 18\19, 19\20, 20\21 | 17g-16 | 1-g |
2L16s | 8\18 < g < 1\2 | g = 17\36 | g = 9\20, 10\22, 11\24 | 8g-7\2 | 1\2-g |
3L15s | 5\18 < g < 1\3 | g = 11\36 | g = 6\21, 7\24, 8\27 | 5g-4\3 | 1\3-g |
4L14s | 4\18 < g < 1\4 | g = 17\72 | g = 5\22, 6\26, 7\30 | 7g-3\2 | 1\2-2g |
5L13s | 7\18 < g < 2\5 | g = 71\180 | g = 9\23, 11\28, 13\33 | 13g-5 | 2-5g |
6L12s | 2\18 < g < 1\6 | g = 5\36 | g = 3\24, 4\30, 5\36 | 2g-1\6 | 1\6-g |
7L11s | 5\18 < g < 2\7 | g = 71\252 | g = 7\25, 9\32, 11\39 | 11g-3 | 2-7g |
8L10s | 2\18 < g < 1\8 | g = 17\144 | g = 3\26, 4\34, 5\42 | 5g-1\2 | 1\2-4g |
9L9s | 1\18 < g < 1\9 | g = 3\36 | g = 2\27, 3\36, 4\45 | g | 1\9-g |
10L8s | 7\18 < g < 4\10 | g = 71\180 | g = 11\28, 15\38, 19\48 | 4g-3\2 | 2-5g |
11L7s | 13\18 < g < 8\11 | g = 287\396 | g = 21\29, 29\40, 37\51 | 7g-5 | 8-11g |
12L6s | 1\18 < g < 1\12 | g = 5\72 | g = 2\30, 3\42, 4\54 | g | 1\6-2g |
13L5s | 11\18 < g < 8\13 | g = 287\468 | g = 19\31, 27\44, 35\57 | 5g-3 | 8-13g |
14L4s | 5\18 < g < 4\14 | g = 71\252 | g = 9\32, 13\46, 17\60 | 2g-1\2 | 2-7g |
15L3s | 1\18 < g < 1\15 | g = 11\180 | g = 2\33, 3\48, 4\63 | g | 1\3-5g |
16L2s | 1\18 < g < 1\16 | g = 17\288 | g = 2\34, 3\50, 4\66 | g | 1\2-8g |
17L1s | 1\18 < g < 1\17 | g = 35\618 | g = 2\35, 3\52, 4\69 | g | 1-17g |
19
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step+Small step |
---|---|---|---|---|
1L18s | 18\19 < g < 1 | g = 37\38 | g = 19\20, 20\21, 21\22 | 18g-17+1-g = 17g-16 |
2L17s | 9\19 < g < 1\2 | g = 37\76 | g = 10\21, 11\23, 12\25 | 17g-8+1-2g = 15g-7 |
3L16s | 6\19 < g < 1\3 | g = 37\114 | g = 7\22, 8\25, 10\31 | 16g-5+1-3g = 13g-4 |
4L15s | 14\19 < g < 3\4 | g = 113\152 | g = 17\23, 20\27, 23\31 | 15g-11+3-4g = 11g-8 |
5L14s | 15\19 < g < 4\5 | g = 151\190 | g = 19\24, 23\29, 27\34 | 14g-11+4-5g = 9g-7 |
6L13s | 3\19 < g < 1\6 | g = 37\228 | g = 4\25, 5\31, 6/37 | 13g-2+1-6g = 7g-1 |
7L12s | 8\19 < g < 3\7 | g = 113\266 | g = 11\26, 14\33, 17\40 | 12g-5+3-7g = 5g-2 |
8L11s | 7\19 < g < 3\8 | g = 113\304 | g = 10\27, 13\35, 16\43 | 11g-4+3-8g = 3g-1 |
9L10s | 2\19 < g < 1\9 | g = 37\342 | g = 3\28, 4\37, 5\46 | 10g-1+1-9g = g |
10L9s | 17\19 < g < 9\10 | g = 341\380 | g = 26\29, 35\39, 44\49 | 9g-8+9-10g = 1-g |
11L8s | 12\19 < g < 7\11 | g = 265\418 | g = 19\30, 26\41, 33\52 | 8g-5+7-11g = 2-3g |
12L7s | 11\19 < g < 7\12 | g = 265\456 | g = 18\31, 25\43, 32\55 | 7g-4+7-12g = 3-5g |
13L6s | 16\19 < g < 11\13 | g = 417\494 | g = 27\32, 38\45, 49\58 | 6g-5+11-13g = 6-7g |
14L5s | 4\19 < g < 3\14 | g = 113\532 | g = 7\33, 10\47, 13\61 | 5g-1+3-14g = 2-9g |
15L4s | 5\19 < g < 4\15 | g = 151\570 | g = 9\34, 13\49, 17\64 | 4g-1+4-15g = 3-11g |
16L3s | 13\19 < g < 11\16 | g = 417\608 | g = 24\35, 35\51, 46\67 | 3g-2+11-16g = 9-13g |
17L2s | 10\19 < g < 9\17 | g = 341\646 | g = 19\36, 28\53, 37\70 | 2g-1+9-17g = 8-15g |
18L1s | 1\19 < g < 1\18 | g = 37\684 | g = 2\37, 3\55, 4\73 | g+1-18g = 1-17g |
20
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L19s | 19\20 < g < 1 | g = 39\40 | g = 20\21, 21\22, 22\23 | 19g-18 | 1-g |
2L18s | 9\20 < g < 1\2 | g = 19\40 | g = 10\22, 11\24, 12\26 | 9g-4 | 1\2-g |
3L17s | 13\20 < g < 2\3 | g = 79\120 | g = 15\23, 17\26, 20\29 | 17g-11 | 2-3g |
4L16s | 4\20 < g < 1\4 | g = 9\40 | g = 5\24, 6\28, 7\32 | 4g-3\4 | 1\4-g |
5L15s | 3\20 < g < 1\5 | g = 7\40 | g = 4\25, 5\30, 6\35 | 3g-2\5 | 1\5-g |
6L14s | 3\20 < g < 1\6 | g = 19\120 | g = 4\26, 5\32, 6\38 | 7g-1 | 1\2-3g |
7L13s | 17\20 < g < 6\7 | g = 239\280 | g = 23\27, 29\34, 35\41 | 13g-11 | 6-7g |
8L12s | 2\20 < g < 1\8 | g = 9\80 | g = 3\28, 4\36, 5\44 | 3g-1\4 | 1\4-2g |
9L11s | 11\20 < g < 5\9 | g = 199\360 | g = 16\29, 21\38, 26\47 | 11g-6 | 5-9g |
10L10s | 1\20 < g < 1\10 | g = 3\40 | g = 2\30, 3\40, 4\50 | g | 1\10-g |
11L9s | 9\20 < g < 5\11 | g = 199\440 | g = 14\31, 19\42, 24\53 | 9g-4 | 5-11g |
12L8s | 3\20 < g < 2\12 | g = 19\120 | g = 5\32, 7\44, 9\56 | 2g-1\4 | 1\2-3g |
13L7s | 3\20 < g < 2\13 | g = 79\520 | g = 5\33, 7\46, 9\59 | 7g-1 | 2-13g |
14L6s | 7\20 < g < 5\14 | g = 99\280 | g = 12\34, 17\48, 22\62 | 3g-1 | 5\2-7g |
15L5s | 1\20 < g < 1\15 | g = 7\120 | g = 2\35, 3\50, 4\65 | g | 1\5-3g |
16L4s | 1\20 < g < 1\16 | g = 9\160 | g = 2\36, 3\52, 4\68 | g | 1\4-4g |
17L3s | 7\20 < g < 6\17 | g = 239\680 | g = 13\37, 19\54, 25\71 | 3g-1 | 6-17g |
18L2s | 1\20 < g < 1\18 | g = 19\360 | g = 2\38, 3\56, 4\74 | g | 1\2-9g |
19L1s | 1\20 < g < 1\19 | g = 39\760 | g = 2\39, 3\58, 4\77 | g | -19g+1 |
21
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L20s | 20\21 < g < 1 | g = 41\42 | g = 21\22, 22\23, 23\24 | 20g-19 | 1-g |
2L19s | 10\21 < g < 1\2 | g = 41\84 | g = 11\23, 12\25, 13\27 | 19g-9 | 1-2g |
3L18s | 6\21 < g < 1\3 | g = 13\42 | g = 7\24, 8\27, 9\30 | 6g-5\3 | 1\3-g |
4L17s | 5\21 < g < 1\4 | g = 41\168 | g = 6\25, 7\29, 8\33 | 17g-2 | 1-4g |
5L16s | 4\21 < g < 1\5 | g = 41\210 | g = 5\26, 6\31, 7\36 | 16g-3 | 1-5g |
6L15s | 3\21 < g < 1\6 | g = 13\84 | g = 4\27, 5\33, 6\39 | 5g-2\3 | 1\3-2g |
7L14s | 2\21 < g < 1\7 | g = 5\42 | g = 3\28, 4\35, 5\42 | 2g-1\7 | 1\7-g |
8L13s | 13\21 < g < 5\8 | g = 209\336 | g = 18\29, 23\37, 28\45 | 13g-8 | 5-8g |
9L12s | 2\21 < g < 1\9 | g = 13\126 | g = 3\30, 4\39, 5\48 | 4g-1\3 | 1\3-3g |
10L11s | 2\21 < g < 1\10 | g = 41\420 | g = 3\31, 4\41, 5\51 | 11g-1 | 1-10g |
11L10s | 19\21 < g < 10\11 | g = 419\462 | g = 29\32, 39\43, 49\54 | 10g-9 | 10-11g |
12L9s | 5\21 < g < 3\12 | g = 41\168 | g = 8\33, 11\45, 14\57 | 3g-2\3 | 1-4g |
13L8s | 8\21 < g < 5\13 | g = 209\546 | g = 13\34, 18\47, 23\70 | 8g-3 | 5-13g |
14L7s | 1\21 < g < 1\14 | g = 5\84 | g = 2\35, 3\49, 4\63 | g | 1\7-2g |
15L6s | 4\21 < g < 3\15 | g = 41\210 | g = 7\36, 10\51, 13\66 | 2g-1\3 | 1-5g |
16L5s | 17\21 < g < 13\16 | g = 545\672 | g = 30\37, 43\53, 56\69 | 5g-4 | 13-16g |
17L4s | 16\21 < g < 13\17 | g = 545\714 | g = 29\38, 42\55, 55\72 | 4g-3 | 13-17g |
18L3s | 1\21 < g < 1\18 | g = 13\252 | g = 2\39, 3\57, 4\75 | g | 1\3-6g |
19L2s | 11\21 < g < 10\19 | g = 419\798 | g = 21\40, 31\59, 41\78 | 2g-1 | 10-19g |
20L1s | 1\21 < g < 1\20 | g = 41\840 | g = 2\41, 3\61, 4/81 | g | 1-20g |
22
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step+Small step |
---|---|---|---|---|
1L21s | 21\22 < g < 1 | g = 43\44 | g = 22\23, 23\24, 24/25 | 21g-20+1-g = 20g-19 |
2L20s | 10\22 < g < 1\2 | g = 21\44 | g = 11\24, 12\26, 13\28 | 10g-9\2+1\2-g = 9g-4 |
3L19s | 7\22 < g < 1\3 | g = 43\132 | g = 8\25, 9\28, 10\31 | 19g-6+1-3g = 16g-5 |
4L18s | 5\22 < g < 1\4 | g = 21\88 | g = 6\26, 7\30, 8\34 | 9g-2+1\2-2g = 7g-3\2 |
5L17s | 13\22 < g < 3\5 | g = 131\220 | g = 16\27, 19\32, 22\37 | 17g-10+3-5g = 12g-7 |
6L16s | 7\22 < g < 2\6 | g = 43\132 | g = 9\28, 11\34, 13\40 | 8g-5\2+1-3g = 5g-2 |
7L15s | 3\22 < g < 1\7 | g = 43\308 | g = 4\29, 5\36, 6\43 | 15g-2+1-7g = 8g-1 |
8L14s | 8\22 < g < 3\8 | g = 65\176 | g = 11\30, 14\38, 17\46 | 7g-5\2+3\2-4g = 3g-2 |
9L13s | 17\22 < g < 7\9 | g = 307\396 | g = 24\31, 31\40, 38\49 | 13g-10+7-9g = 4g-3 |
10L12s | 2\22 < g < 1\10 | g = 21\220 | g = 3\32, 4\42, 5\52 | 6g-1\2+1\2-5g = g |
11L11s | 1\22 < g < 1\11 | g = 3\44 | g = 2\33, 3\44, 4\55 | g + 1\11-g = 1\11 |
12L10s | 9\22 < g < 5\12 | g = 109\264 | g = 14\34, 19\46, 24\58 | 5g-2+5\2-6g = 1\2-g |
13L9s | 5\22 < g < 3\13 | g = 131\572 | g = 8\35, 11\48, 14\61 | 9g-2+3-13g = 1-4g |
14L8s | 3\22 < g < 2\14 | g = 43\308 | g = 5\36, 7\50, 9\64 | 4g-1\2+1-7g = 1\2-3g |
15L7s | 19\22 < g < 13\15 | g = 571\660 | g = 32\37, 45\52, 58\67 | 7g-6+13-15g = 7-8g |
16L6s | 4\22 < g < 3\16 | g = 65\352 | g = 7\38, 10\54, 13\70 | 3g-1\2+3\2-8g = 1-5g |
17L5s | 9\22 < g < 7\17 | g = 207\748 | g = 16\39, 23\56, 30\73 | 5g-2+7-17g = 5-12g |
18L4s | 6\22 < g < 5\18 | g = 109\396 | g = 11\40, 16\58, 21\76 | 2g-1\2+5\2-9g = 2-7g |
19L3s | 15\22 < g < 13\19 | g = 571\836 | g = 28\41, 41\60, 54\79 | 3g-2+13-19g = 11-16g |
20L2s | 1\22 < g < 1\20 | g = 21\440 | g = 2\42, 3\62, 4\72 | g+1\2-10g = 1\2-9g |
21L1s | 1\22 < g < 1\21 | g = 43\924 | g = 2\43, 3\64, 4\85 | g+1-21g = 1-20g |
23
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L22s | 22\23 < g < 1 | g = 45\46 | g = 23\24, 24\25, 25\26 | 22g-21 | 1-g |
2L21s | 11\23 < g < 1\2 | g = 45\92 | g = 12\25, 13\27, 14\29 | 21g-10 | 1-2g |
3L20s | 15\23 < g < 2\3 | g = 91\138 | g = 17\26, 19\29, 21\32 | 20g-13 | 1-3g |
4L19s | 17\23 < g < 3\4 | g = 137\184 | g = 20\27, 23\31, 26\35 | 19g-14 | 3-4g |
5L18s | 9\23 < g < 2\5 | g = 91\230 | g = 11\28, 13\33, 15\38 | 18g-7 | 2-5g |
6L17s | 19\23 < g < 5\6 | g = 229\276 | g = 24\29, 29\35, 34\41 | 17g-15 | 1-6g |
7L16s | 13\23 < g < 4\7 | g = 183\322 | g = 17\30, 21\37, 25\44 | 16g-9 | 4-7g |
8L15s | 20\23 < g < 7\8 | g = 321\368 | g = 27\31, 34\39, 41\47 | 15g-13 | 7-8g |
9L14s | 5\23 < g < 2\9 | g = 91\414 | g = 7\32, 9\41, 11\50 | 14g-7 | 11-9g |
10L13s | 16\23 < g < 7\10 | g = 321\460 | g = 23\33, 30\43, 37\53 | 13g-9 | 7-10g |
11L12s | 2\23 < g < 1\11 | g = 45\506 | g = 3\34, 4\45, 5\56 | 12g-1 | 1-11g |
12L11s | 21\23 < g < 11\12 | g = 505\552 | g = 32\35, 43\47, 54\59 | 11g-10 | 11-12g |
13L10s | 7\23 < g < 4\13 | g = 183\598 | g = 11\36, 15\49, 19\62 | 10g-3 | 4-13g |
14L9s | 18\23 < g < 11\14 | g = 505\644 | g = 29\37, 40\51, 51\65 | 9g-7 | 11-14g |
15L8s | 3\23 < g < 2\15 | g = 91\690 | g = 5\38, 7\53, 9\68 | 8g-1 | 2-15g |
16L7s | 10\23 < g < 7\16 | g = 321\736 | g = 17\39, 24\55, 31\71 | 7g-3 | 7-16g |
17L6s | 4\23 < g < 3\17 | g = 137\782 | g = 7\40, 10\57, 13\74 | 6g-1 | 3-17g |
18L5s | 14\23 < g < 11\18 | g = 505\828 | g = 25\41, 36\59, 47\77 | 5g-4 | 11-18g |
19L4s | 6\23 < g < 5\19 | g = 229\874 | g = 11\42, 16\61, 21\80 | 4g-1 | 5-19g |
20L3s | 8\23 < g < 7\20 | g = 321\920 | g = 15\43, 22\63, 29\83 | 3g-1 | 13-20g |
21L2s | 12\23 < g < 11\21 | g = 505\966 | g = 23\44, 34\65, 45\86 | 2g-1 | 1-21g |
22L1s | 1\23 < g < 1\22 | g = 45\1012 | g = 2\45, 3\67, 4\89 | g | 1-22g |
24
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L23s | 23\24 < g < 1 | g = 47\48 | g = 24\25, 25\26, 26\27 | 23g-22 | 1-g |
2L22s | 11\24 < g < 1\2 | g = 23\48 | g = 12\26, 13\28, 14\30 | 1/2-g | 11g-5 |
3L21s | 7\24 < g < 1\3 | g = 15\48 | g = 8\27, 9\30, 10\33 | 2/3-2g | g-1/3 |
4L20s | 5\24 < g < 1\4 | g = 11\48 | g = 6\28, 7\32, 8\36 | 5g-1 | 1/4-g |
5L19s | 19\24 < g < 4\5 | g = 191\240 | g = 23\29, 27\34, 31\39 | 19g-15 | 4-5g |
6L18s | 3\24 < g < 1\6 | g = 7\48 | g = 4\30, 5\36, 6\42 | 3g-1\3 | 1\6-g |
7L17s | 17\24 < g < 5\7 | g = 239\336 | g = 22\31, 27\38, 32\45 | 5-17g | 7g-2 |
8L16s | 2\24 < g < 1\8 | g = 5\48 | g = 3\32, 4\40, 5\48 | 2g-1\8 | 1\8-g |
9L15s | 5\24 < g < 2\9 | g = 31\144 | g = 7\33, 9\42, 11\51 | 5g-1 | 2\3-3g |
10L14s | 7\24 < g < 3\10 | g = 71\240 | g = 10\34, 13\44, 16\54 | 7g-2 | 3\2-5g |
11L13s | 13\24 < g < 6\11 | g = 287\528 | g = 19\35, 25\46, 31\57 | 13g-7 | 6-11g |
12L12s | 1\24 < g < 1\12 | g = 3\48 | g = 2\36, 3\48, 4\60 | g | 1\12-g |
13L11s | 11\24 < g < 6\13 | g = 287\624 | g = 17\37, 23\50, 29\63 | 11g-5 | 6-13g |
14L10s | 17\24 < g < 10\14 | g = 239\336 | g = 27\38, 37\52, 47\66 | 3\2-5g | 7g-2 |
15L9s | 3\24 < g < 2\15 | g = 31\240 | g = 5\39, 7\54, 9\69 | 3g-1\3 | 2\3-5g |
16L8s | 1\24 < g < 1\16 | g = 5\96 | g = 2\40, 3\56, 4\72 | g | 1\8-2g |
17L7s | 7\24 < g < 5\17 | g = 239\816 | g = 12\41, 17\58, 22\75 | 4-7g | 17g-12 |
18L6s | 1\24 < g < 1\18 | g = 7\144 | g = 2\42, 3\60, 4\78 | g | 1\6-3g |
19L5s | 5\24 < g < 4\19 | g = 191\912 | g = 9\43, 13\62, 17\81 | 5g-5 | 4-19g |
20L4s | 1\24 < g < 1\20 | g = 11\240 | g = 2\44, 3\64, 4\84 | g | 1\4-5g |
21L3s | 1\24 < g < 1\21 | g = 15\336 | g = 2\45, 3\66, 4\87 | g | 1\3-7g |
22L2s | 1\24 < g < 1\22 | g = 23\264 | g = 2\46, 3\68, 4\90 | g | 1\2-11g |
23L1s | 1\24 < g < 1\23 | g = 47\1104 | g = 2\47, 3\70, 4\93 | g | 1-23g |
25
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L24s | 24\25 < g < 1 | g = 49\50 | g = 25\26, 26\27, 27\28 | 24g-23 | 1-g |
2L23s | 12\25 < g < 1\2 | g = 49\100 | g = 13\27, 14\29, 15\31 | 23g-11 | 1-2g |
3L22s | 8\25 < g < 1\3 | g = 49\150 | g = 9\28, 10\31, 11\34 | 22g-7 | 1-3g |
4L21s | 6\25 < g < 1\4 | g = 49\200 | g = 7\29, 8\33, 9\37 | 21g-5 | 1-4g |
5L20s | 4\25 < g < 1\5 | g = 9\50 | g = 5\30, 6\35, 7\40 | 4g-3\5 | 1\5-g |
6L19s | 4\25 < g < 1\6 | g = 49\300 | g = 5\31, 6\37, 7\43 | 19g-3 | 1-6g |
7L18s | 7\25 < g < 2\7 | g = 99\350 | g = 9\32, 11\39, 13\46 | 18g-5 | 2-7g |
8L17s | 3\25 < g < 1\8 | g = 49\400 | g = 4\33, 5\41, 6\47 | 17g-2 | 1-8g |
9L16s | 11\25 < g < 4\9 | g = 199\450 | g = 15\34, 19\43, 23\52 | 16g-7 | -9g+4 |
10L15s | 2\25 < g < 1\10 | g = 9\100 | g = 3\35, 4\45, 5\55 | 3g-1\5 | 1\5-2g |
11L14s | 9\25 < g < 4\11 | g = 199\550 | g = 13\36, 17\47, 21\58 | 14g-5 | -11g+4 |
12L13s | 2\25 < g < 1\12 | g = 49\600 | g = 3\37, 4\49, 5\61 | 13g-1 | 1-12g |
13L12s | 23\25 < g < 12\13 | g = 599\650 | g = 35\38, 47\51, 59\64 | 12g-11 | 12-13g |
14L11s | 16\25 < g < 9\14 | g = 449\700 | g = 25\39, 34\53, 43\67 | 11g-7 | -14g+9 |
15L10s | 3\25 < g < 2\15 | g = 19\150 | g = 5\40, 7\55, 9\70 | 2g-1\5 | 2\5-3g |
16L9s | 14\25 < g < 9\16 | g = 449\800 | g = 23\41, 32\57, 41\73 | 9g-5 | 9-16g |
17L8s | 22\25 < g < 15\17 | g = 749\850 | g = 37\42, 52\59, 67\76 | 8g-7 | 15-17g |
18L7s | 18\25 < g < 13\18 | g = 649\900 | g = 31\43, 44\61, 57\79 | 7g-5 | 13-18g |
19L6s | 21\25 < g < 16\19 | g = 799\950 | g = 37\44, 53\63, 69\82 | 6g-5 | 16-19g |
20L5s | 1\25 < g < 1\20 | g = 9\200 | g = 2\45, 3\65, 4\85 | g | 1\5-4g |
21L4s | 16\21 < g < 19\25 | g = 799\1050 | g = 35\46, 51\67, 71\88 | 4g-3 | 16-21g |
22L3s | 17\25 < g < 15\22 | g = 749\1100 | g = 32\47, 47\69, 62\91 | 3g-2 | 15-22g |
23L2s | 13\25 < g < 12\23 | g = 599\1150 | g = 25\48, 37\71, 49\94 | 2g-1 | 11-23g |
24L1s | 1\25 < g < 1\24 | g = 49\1200 | g = 2\49, 3\73, 4\97 | g | 1-24g |
26
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L25s | 25\26 < g < 1 | g = 51\52 | g = 26\27, 27\28, 28\29 | 25g-24 | 1-g |
2L24s | 12\26 < g < 1\2 | g = 25\52 | g = 13\28, 14\30, 15\32 | 12g-11\2 | 1\2-g |
3L23s | 17\26 < g < 2\3 | g = 103\156 | g = 19\29, 21\32, 23\35 | 23g-15 | 2-3g |
4L22s | 6\26 < g < 1\4 | g = 25\104 | g = 7\30, 8\34, 9\38 | 11g-5\2 | 1\2-2g |
5L21s | 5\26 < g < 1\5 | g = 51\260 | g = 6\31, 7\36, 8\41 | 21g-4 | 1-5g |
6L20s | 4\26 < g < 1\6 | g = 25\156 | g = 5\32, 6\38, 7\44 | 10g-3\2 | 1\2-3g |
7L19s | 11\26 < g < 3\7 | g = 155\364 | g = 14\33, 17\40, 20\47 | 19g-8 | 3-7g |
8L18s | 3\26 < g < 1\8 | g = 25\208 | g = 4\34, 5\42, 6\50 | 9g-1 | 1\2-4g |
9L17s | 23\26 < g < 8\9 | g = 415\468 | g = 31\35, 39\44, 47\53 | 17g-15 | 8-9g |
10L16s | 5\26 < g < 2\10 | g = 51\260 | g = 7\36, 9\46, 11\56 | 8g-3\2 | 1-5g |
11L15s | 7\26 < g < 3\11 | g = 155\572 | g = 10\37, 13\48, 16\59 | 15g-4 | 3-11g |
12L14s | 2\26 < g < 1\12 | g = 25\312 | g = 3\38, 4\50, 5\62 | 7g-1\2 | 1\2-6g |
13L13s | 1\26 < g < 1\13 | g = 3\52 | g = 2\39, 3\52, 4\65 | g | 1\13-g |
14L12s | 11\26 < g < 6\14 | g = 155\364 | g = 17\40, 23\54, 29\68 | 6g-5\2 | 3-7g |
15L11s | 19\26 < g < 11\15 | g = 571\780 | g = 30\41, 41\56, 52\71 | 11g-8 | 11-15g |
16L10s | 8\26 < g < 5\16 | g = 129\416 | g = 13\42, 18\58, 23\74 | 13\2-8g | 5g-4 |
17L9s | 3\26 < g < 2\17 | g = 103\884 | g = 5\43, 7\60, 9\77 | 9g-1 | 2-17g |
18L8s | 10\26 < g < 7\18 | g = 181\468 | g = 17\44, 24\62, 31\80 | 4g-7\2 | 7-9g |
19L7s | 15\26 < g < 11\19 | g = 571\988 | g = 26\45, 37\64, 48\83 | 7g-4 | 11-19g |
20L6s | 9\26 < g < 7\20 | g = 181\520 | g = 16\46, 23\66, 30\86 | 3g-1 | 7\2-10g |
21L5s | 21\26 < g < 17\21 | g = 883\1092 | g = 38\47, 55\68, 72\89 | 5g-4 | 16-21g |
22L4s | 7\26 < g < 6\22 | g = 155\572 | g = 13\48, 19\70, 25\92 | 2g-1\2 | 3-11g |
23L3s | 9\26 < g < 8\23 | g = 415\1196 | g = 17\49, 25\72, 33/95 | 3g-1 | 8-23g |
24L2s | 1\26 < g < 1\24 | g = 25\312 | g = 2\50, 3\74, 4\98 | g | 1\2-12g |
25L1s | 1\26 < g < 1\25 | g = 51\1300 | g = 2\51, 3\76, 4\101 | g | 1-25g |
27
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L26s | 26\27 < g < 1 | g = 53\54 | g = 27\28, 28\29, 29\30 | 26g-25 | 1-g |
2L25s | 13\27 < g < 1\2 | g = 53\108 | g = 14\29, 15\31, 16\33 | 25g-12 | 1-2g |
3L24s | 8\27 < g < 1\3 | g = 17\54 | g = 9\30, 10\33, 11\36 | 8g-7\3 | 1-3g |
4L23s | 20\27 < g < 3\4 | g = 161\216 | g = 23\31, 26\35, 29\39 | 23g-17 | 3-4g |
5L22s | 16\27 < g < 3\5 | g = 161\270 | g = 19\32, 22\37, 25\42 | 22g-13 | 3-5g |
6L21s | 4\27 < g < 1\6 | g = 17\108 | g = 5\33, 6\39, 7\45 | 7g-1 | 1\3-2g |
7L20s | 23\27 < g < 6\7 | g = 323\378 | g = 29\34, 35\41, 41\48 | 20g-17 | 6-7g |
8L19s | 10\27 < g < 3\8 | g = 161\432 | g = 13\35, 16\43, 19\51 | 19g-7 | 3-8g |
9L18s | 2\27 < g < 1\9 | g = 5\54 | g = 3\36, 4\45, 5\54 | 2g-1\9 | 1\9-g |
10L17s | 8\27 < g < 3\10 | g = 161\540 | g = 11\37, 14\47, 17\57 | 17g-5 | 3-10g |
11L16s | 22\27 < g < 9\11 | g = 485\594 | g = 31\38, 40\49, 49\60 | 16g-13 | 9-11g |
12L15s | 2\27 < g < 1\12 | g = 17\216 | g = 3\39, 4\51, 5\63 | 5g-1\3 | 1\3-4g |
13L14s | 2\27 < g < 1\13 | g = 53\702 | g = 3\40, 4\53, 5\66 | 14g-1 | 1-13g |
14L13s | 25\27 < g < 13\14 | g = 701\756 | g = 38\41, 51\55, 64\69 | 13g-12 | 13-14g |
15L12s | 7\27 < g < 4\15 | g = 71\270 | g = 11\42, 15\57, 19\72 | 4g-4 | 14\3-5g |
16L11s | 5\27 < g < 3\16 | g = 161\864 | g = 8\43, 11\59, 14\75 | 11g-2 | 3-16g |
17L10s | 19\27 < g < 12\17 | g = 647\918 | g = 31\44, 43\61, 55\78 | 10g-7 | 12-17g |
18L9s | 1\27 < g < 1\18 | g = 5\108 | g = 2\45, 3\63, 4\81 | g | 1\9-2g |
19L8s | 17\27 < g < 12\19 | g = 647\1026 | g = 29\46, 41\65, 53\84 | 8g-5 | 12-19g |
20L7s | 4\27 < g < 3\20 | g = 161\1080 | g = 7\47, 10\67, 13\87 | 7g-1 | 3-20g |
21L6s | 5\27 < g < 4\21 | g = 71\378 | g = 9\48, 13\69, 17\90 | 2g-1\3 | 4-7g |
22L5s | 11\27 < g < 9\22 | g = 485\1188 | g = 20\49, 29\71, 38\93 | 5g-2 | 9-22g |
23L4s | 7\27 < g < 6\23 | g = 323\1242 | g = 13\50, 19\73, 25\96 | 4g-1 | 6-23g |
24L3s | 1\27 < g < 1\24 | g = 17\432 | g = 2\51, 3\75, 4\99 | g | 1\3-8g |
25L2s | 14\27 < g < 13\25 | g = 701\1350 | g = 27\52, 40\77, 53\102 | 2g-1 | 13-25g |
26L1s | 1\27 < g < 1\26 | g = 53\1404 | g = 2\53, 3\79, 4\105 | g | 1-26g |
28
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L27s | 27\28 < g < 1 | g = 55\56 | g = 28\29, 29\30, 30\31 | 27g-26 | 1-g |
2L26s | 13\28 < g < 1\2 | g = 27\56 | g = 14\30, 15\32, 16\34 | 13g-6 | 1\2-g |
3L25s | 9\28 < g < 1\3 | g = 55\168 | g = 10\31, 11\34, 12\37 | 25g-8 | 1-3g |
4L24s | 6\28 < g < 1\4 | g = 13\56 | g = 7\32, 8\36, 9\40 | 6g-5\4 | 1\4-g |
5L23s | 11\28 < g < 2\5 | g = 111\280 | g = 13\33, 15\38, 17\43 | 23g-9 | 2-5g |
6L22s | 9\28 < g < 2\6 | g = 55\168 | g = 11\34, 13\40, 15\46 | 11g-7\2 | 1-3g |
7L21s | 3\28 < g < 1\7 | g = 7\56 | g = 4\35, 5\42, 6\49 | 3g-2\7 | 1\7-g |
8L20s | 3\28 < g < 1\8 | g = 13\112 | g = 4\36, 5\44, 6\52 | 5g-1\2 | 1\4-2g |
9L19s | 3\28 < g < 1\9 | g = 55\504 | g = 4\37, 5\46, 6\55 | 19g-2 | 1-9g |
10L18s | 11\28 < g < 4\10 | g = 111\280 | g = 15\38, 19\48, 23\58 | 4g-7\2 | 2-5g |
11L17s | 5\28 < g < 2\11 | g = 111\616 | g = 7\39, 9\50, 11\61 | 17g-3 | 2-11g |
12L16s | 2\28 < g < 1\12 | g = 13\168 | g = 3\40, 4\52, 5\64 | 4g-1\4 | 1\4-3g |
13L15s | 15\28 < g < 7\13 | g = 391\728 | g = 22\41, 29\54, 36\67 | 15g-8 | 7-13g |
14L14s | 1\28 < g < 1\14 | g = 3\56 | g = 2\42, 3\56, 4\70 | g | 1\14-g |
15L13s | 13\28 < g < 7\15 | g = 391\840 | g = 20\43, 27\58, 34\73 | 13g-6 | 7-15g |
16L12s | 5\28 < g < 3\16 | g = 41\224 | g = 8\44, 11\60, 14\76 | 3g-1\2 | 3\4-4g |
17L11s | 23\28 < g < 14\17 | g = 783\952 | g = 37\45, 51\62, 65\79 | 11g-9 | 13-17g |
18L10s | 3\28 < g < 2\18 | g = 55\504 | g = 5\46, 7\64, 9\82 | 5g-1\2 | 1-9g |
19L9s | 25\28 < g < 17\19 | g = 951\1064 | g = 42\47, 59\66, 76\85 | 9g-8 | 17-19g |
20L8s | 4\28 < g < 3\20 | g = 41\280 | g = 7\48, 10\68, 13\88 | 2g-1\4 | 3\4-5g |
21L7s | 1\28 < g < 1\21 | g = 7\168 | g = 2\49, 3\70, 4\91 | g | 1\7-3g |
22L6s | 5\28 < g < 4\22 | g = 111\616 | g = 9\50, 13\72, 17\94 | 3g-1\2 | 2-11g |
23L5s | 17\28 < g < 14\23 | g = 783\1288 | g = 31\51, 45\74, 59\97 | 5g-3 | 14-23g |
24L4s | 1\28 < g < 1\24 | g = 13\336 | g = 2\52, 3\76, 4\100 | g | 1\4-6g |
25L3s | 19\28 < g < 17\25 | g = 951\1400 | g = 36\53, 53\78, 70\103 | 3g-2 | 17-25g |
26L2s | 15\28 < g < 14\26 | g = 391\728 | g = 29\54, 43\80, 57\106 | g-1\2 | 19\2-13g |
27L1s | 1\28 < g < 1\27 | g = 55\1512 | g = 2\55, 3\82, 4\109 | g | 1-27g |
29
Large-small numbers | Generator range | Midpoint | Boundaries of propriety, maximum expressiveness, diatonicity | Large step | Small step |
---|---|---|---|---|---|
1L28s | 28\29 < g < 1 | g = 57\58 | g = 29\30, 30\31, 31\32 | 28g-27 | 1-g |
2L27s | 14\29 < g < 1\2 | g = 57\116 | g = 15\31, 16\33, 17\35 | 27g-13 | 1-2g |
3L26s | 19\29 < g < 2\3 | g = 115\174 | g = 21\32, 23\35, 25\38 | 26g-17 | 2-3g |
4L25s | 7\29 < g < 1\4 | g = 57\232 | g = 8\33, 9\37, 10\41 | 25g-6 | 1-4g |
5L24s | 23\29 < g < 4\5 | g = 231\290 | g = 27\34, 31\39, 35\44 | 24g-19 | 4-5g |
6L23s | 24\29 < g < 5\6 | g = 289\348 | g = 29\35, 34\41, 39\47 | 23g-19 | 5-6g |
7L22s | 4\29 < g < 1\7 | g = 57\406 | g = 5\36, 6\43, 7\50 | 22g-3 | 1-7g |
8L21s | 18\29 < g < 5\8 | g = 289\464 | g = 23\37, 28\45, 33\53 | 21g-13 | 5-8g |
9L20s | 16\29 < g < 5\9 | g = 289\522 | g = 21\38, 26\47, 31\56 | 20g-11 | 5-9g |
10L19s | 26\29 < g < 9\10 | g = 521\580 | g = 35\39, 44\49, 53\59 | 19g-17 | 9-10g |
11L18s | 21\29 < g < 8\11 | g = 463\638 | g = 29\40, 37\51, 45\62 | 18g-13 | 8-11g |
12L17s | 12\29 < g < 5\12 | g = 289\696 | g = 17\41, 22\53, 27\65 | 17g-7 | 5-12g |
13L16s | 20\29 < g < 9\13 | g = 521\754 | g = 29\42, 38\55, 47\68 | 16g+11 | 9-13g |
14L15s | 2\29 < g < 1\14 | g = 57\812 | g = 3\43, 4\57, 5\71 | 15g-1 | 1-14g |
15L14s | 27\29 < g < 14\15 | g = 811\870 | g = 41\44, 55\59, 69\74 | 14g-13 | 14-15g |
16L13s | 9\29 < g < 5\16 | g = 289\928 | g = 14\45, 19\61, 24\77 | 13g-4 | 5-16g |
17L12s | 17\29 < g < 10\17 | g = 579\986 | g = 27\46, 37\63, 47\80 | 12g-5 | 7-17g |
18L11s | 8\29 < g < 5\18 | g = 289\1044 | g = 13\47, 18\65, 23\83 | 11g-3 | 5-18g |
19L10s | 3\29 < g < 2\19 | g = 115\1102 | g = 5\48, 7\67, 9\86 | 10g-1 | 2-19g |
20L9s | 13\29 < g < 9\20 | g = 521\1160 | g = 22\49, 31\69, 40\89 | 9g-5 | 9-20g |
21L8s | 11\29 < g < 8\21 | g = 463\1216 | g = 19\50, 27\71, 35\92 | 8g-3 | 8-21g |
22L7s | 25\29 < g < 19\22 | g = 1001\1274 | g = 44\51, 63\73, 82\95 | 7g-6 | 9-22g |
23L6s | 5\29 < g < 4\23 | g = 231\1332 | g = 9\52, 13\75, 17\98 | 6g-1 | 4-23g |
24L5s | 6\29 < g < 5\24 | g = 289\1392 | g = 11\53, 16\77, 21\101 | 5g-9 | 5-24g |
25L4s | 22\29 < g < 19\25 | g = 1001\1450 | g = 41\54, 60\79, 79\104 | 4g-3 | 19-25g |
26L3s | 10\29 < g < 9\26 | g = 521\1508 | g = 19\55, 28\81, 37\107 | 3g-1 | 19\2-26g |
27L2s | 15\29 < g < 14\27 | g = 811\1564 | g = 29\56, 43\83, 57\110 | 2g-1 | 17-27g |
28L1s | 1\29 < g < 1\28 | g = 57\1622 | g = 2\57, 3\85, 4\113 | g | 1-28g |