73edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
Created page with "'''Division of the third harmonic into 73 equal parts''' (73edt) is related to 46 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 1..."
Tags: Mobile edit Mobile web edit
 
Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Line 35: Line 35:
| | 5
| | 5
| | 130.2709
| | 130.2709
| |  
| | 55/51
| |  
| |  
|-
|-
Line 50: Line 50:
| | 8
| | 8
| | 208.4334
| | 208.4334
| |  
| | 44/39
| |  
| |  
|-
|-
Line 80: Line 80:
| | 14
| | 14
| | 364.7585
| | 364.7585
| |  
| | 100/81
| |  
| |  
|-
|-
Line 90: Line 90:
| | 16
| | 16
| | 416.8668
| | 416.8668
| |  
| | [[14/11]]
| |  
| |  
|-
|-
| | 17
| | 17
| | 442.9210
| | 442.9210
| |  
| | 31/24
| |  
| |  
|-
|-
Line 120: Line 120:
| | 22
| | 22
| | 573.1919
| | 573.1919
| |  
| | 39/28
| |  
| |  
|-
|-
| | 23
| | 23
| | 599.2461
| | 599.2461
| |  
| | 140/99
| |  
| |  
|-
|-
Line 150: Line 150:
| | 28
| | 28
| | 729.5170
| | 729.5170
| |  
| | [[32/21]]
| |  
| |  
|-
|-
Line 210: Line 210:
| | 40
| | 40
| | 1042.1671
| | 1042.1671
| |  
| | 42/23
| |  
| |  
|-
|-
Line 230: Line 230:
| | 44
| | 44
| | 1146.3838
| | 1146.3838
| |  
| | 64/33
| |  
| |  
|-
|-
| | 45
| | 45
| | 1172.4380
| | 1172.4380
| |  
| | 63/32
| |  
| |  
|-
|-
Line 250: Line 250:
| | 48
| | 48
| | 1250.6005
| | 1250.6005
| |  
| | 35/17
| |  
| |  
|-
|-
| | 49
| | 49
| | 1276.6547
| | 1276.6547
| |  
| | 23/11
| |  
| |  
|-
|-
Line 265: Line 265:
| | 51
| | 51
| | 1328.7631
| | 1328.7631
| |  
| | [[14/13|28/13]]
| |  
| |  
|-
|-
Line 355: Line 355:
| | 69
| | 69
| | 1797.7383
| | 1797.7383
| |  
| | [[24/17|48/17]]
| |  
| |  
|-
|-
Line 365: Line 365:
| | 71
| | 71
| | 1849.8466
| | 1849.8466
| |  
| | 99/34
| |  
| |  
|-
|-
| | 72
| | 72
| | 1875.9008
| | 1875.9008
| |  
| | 65/22
| |  
| |  
|-
|-

Revision as of 06:44, 1 February 2019

Division of the third harmonic into 73 equal parts (73edt) is related to 46 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 1.5078 cents compressed and the step size is about 26.0542 cents. It is consistent to the 18-integer-limit. In comparison, 46edo is only consistent up to the 14-integer-limit.

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 26.0542 66/65
2 52.1084 34/33
3 78.1625 68/65
4 104.2167 17/16
5 130.2709 55/51
6 156.3251
7 182.3792 10/9
8 208.4334 44/39
9 234.4876
10 260.5418
11 286.5960
12 312.6501 pseudo-6/5
13 338.7043
14 364.7585 100/81
15 390.8127 pseudo-5/4
16 416.8668 14/11
17 442.9210 31/24
18 468.9752
19 495.0294
20 521.0836
21 547.1377
22 573.1919 39/28
23 599.2461 140/99
24 625.3003
25 651.3545
26 677.4086
27 703.4628 pseudo-3/2
28 729.5170 32/21
29 755.5712
30 781.6253
31 807.6795
32 833.7337
33 859.7879
34 885.8421 pseudo-5/3
35 911.8962
36 937.9504
37 964.0046
38 990.0588
39 1016.1129 pseudo-9/5
40 1042.1671 42/23
41 1068.2213
42 1094.2755
43 1120.3297
44 1146.3838 64/33
45 1172.4380 63/32
46 1198.4922 pseudo-octave
47 1224.5464
48 1250.6005 35/17
49 1276.6547 23/11
50 1302.7089
51 1328.7631 28/13
52 1354.8173
53 1380.8714
54 1406.9256
55 1432.9798
56 1459.0340
57 1485.0882
58 1511.1423 pseudo-12/5
59 1537.1965
60 1563.2507
61 1589.3049 pseudo-5/2
62 1615.3590
63 1641.4132
64 1667.4674
65 1693.5216
66 1719.5758 27/10
67 1745.6299
68 1771.6841
69 1797.7383 48/17
70 1823.7925
71 1849.8466 99/34
72 1875.9008 65/22
73 1901.9550 exact 3/1 just perfect fifth plus an octave