Tetrachord: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>JosephRuhf
**Imported revision 602524282 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The word "tetrachord" usually refers to the interval of a perfect fourth (just or not) divided into three subintervals by the interposition of two additional notes.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-12-19 20:48:36 UTC</tt>.<br>
: The original revision id was <tt>602524282</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The word "tetrachord" usually refers to the interval of a perfect fourth (just or not) divided into three subintervals by the interposition of two additional notes.


John Chalmers, in [[http://eamusic.dartmouth.edu/%7Elarry/published_articles/divisions_of_the_tetrachord/index.html|Divisions of the Tetrachord]], tells us:
John Chalmers, in [http://eamusic.dartmouth.edu/%7Elarry/published_articles/divisions_of_the_tetrachord/index.html Divisions of the Tetrachord], tells us:


//Tetrachords are modules from which more complex scalar and harmonic structures may be built. These structures range from the simple heptatonic scales known to the classical civilizations of the eastern Mediterranean to experimental gamuts with many tones. Furthermore, the traditional scales of much of the world's music, including that of Europe, the [[Arabic, Turkish, Persian|Near East]], the Catholic and Orthodox churches, Iran and India, are still based on tetrachords. Tetrachords are thus basic to an understanding of much of the world's music.//
''Tetrachords are modules from which more complex scalar and harmonic structures may be built. These structures range from the simple heptatonic scales known to the classical civilizations of the eastern Mediterranean to experimental gamuts with many tones. Furthermore, the traditional scales of much of the world's music, including that of Europe, the [[Arabic,_Turkish,_Persian|Near East]], the Catholic and Orthodox churches, Iran and India, are still based on tetrachords. Tetrachords are thus basic to an understanding of much of the world's music.''


Related pages: [[22edo tetrachords]], [[17edo tetrachords]], [[Tricesimoprimal Tetrachordal Tesseract]], [[Armodue armonia#Creating%20scales%20with%20Armodue:%20modal%20systems-Modal%20systems%20based%20on%20tetrachords%20and%20pentachords|16edo tetrachords]], [[Gallery of Wakalixes#Divisions%20of%20the%20Tetrachord|Wakalix tetrachords]]
Related pages: [[22edo_tetrachords|22edo tetrachords]], [[17edo_tetrachords|17edo tetrachords]], [[Tricesimoprimal_Tetrachordal_Tesseract|Tricesimoprimal Tetrachordal Tesseract]], [[Armodue_armonia#Creating scales with Armodue: modal systems-Modal systems based on tetrachords and pentachords|16edo tetrachords]], [[Gallery_of_Wakalixes#Divisions of the Tetrachord|Wakalix tetrachords]]
__FORCETOC__
-----


[[toc|flat]]
=Ancient Greek Genera=
----
 
=Ancient Greek Genera=  


The ancient Greeks distinguished between three primary genera depending on the size of the largest interval, the characteristic interval, or CI-- the enharmonic, chromatic, and diatonic. Modern theorists have added a fourth genera, called hyperenharmonic.
The ancient Greeks distinguished between three primary genera depending on the size of the largest interval, the characteristic interval, or CI-- the enharmonic, chromatic, and diatonic. Modern theorists have added a fourth genera, called hyperenharmonic.


===hyperenharmonic genus===  
===hyperenharmonic genus===
The CI is larger than 425 cents.
The CI is larger than 425 cents.


===enharmonic genus===  
===enharmonic genus===
The CI approximates a major third, falling between 425 cents and 375 cents.
The CI approximates a major third, falling between 425 cents and 375 cents.


===chromatic genus===  
===chromatic genus===
The CI approximates a minor or neutral third, falling between 375 cents and 250 cents.
The CI approximates a minor or neutral third, falling between 375 cents and 250 cents.


===diatonic genus===  
===diatonic genus===
The CI (and the other intervals) approximates a "tone," measuring less than 250 cents.
The CI (and the other intervals) approximates a "tone," measuring less than 250 cents.


==Ptolemy's Catalog==  
==Ptolemy's Catalog==
 
In the ''Harmonics'', Ptolemy catalogs several historical tetrachords and attributes them to particular theorists.


In the //Harmonics//, Ptolemy catalogs several historical tetrachords and attributes them to particular theorists.
{| class="wikitable"
|-
! colspan="3" | Archytas's Genera
|-
| | 28/27, 36/35, 5/4
| | 63 + 49 + 386
| | enharmonic
|-
| | 28/27, 243/224, 32/27
| | 63 + 141 + 294
| | chromatic
|-
| | 28/27, 8/7, 9/8
| | 63 + 231 + 204
| | diatonic
|}


||||||~ Archytas's Genera ||
{| class="wikitable"
|| 28/27, 36/35, 5/4 || 63 + 49 + 386 || enharmonic ||
|-
|| 28/27, 243/224, 32/27 || 63 + 141 + 294 || chromatic ||
! colspan="3" | Eratosthenes's Genera
|| 28/27, 8/7, 9/8 || 63 + 231 + 204 || diatonic ||
|-
| | 40/39, 39/38, 19/15
| | 44 + 45 + 409
| | enharmonic
|-
| | 20/19, 19/18, 6/5
| | 89 + 94 + 316
| | chromatic
|-
| | 256/243, 9/8, 9/8
| | 90 + 204 + 204
| | diatonic
|}


||||||~ Eratosthenes's Genera ||
{| class="wikitable"
|| 40/39, 39/38, 19/15 || 44 + 45 + 409 || enharmonic ||
|-
|| 20/19, 19/18, 6/5 || 89 + 94 + 316 || chromatic ||
! colspan="3" | Didymos's Genera
|| 256/243, 9/8, 9/8 || 90 + 204 + 204 || diatonic ||
|-
| | 32/31, 31/30, 5/4
| | 55 + 57 + 386
| | enharmonic
|-
| | 16/15, 25/24, 6/5
| | 112 + 74 + 316
| | chromatic
|-
| | 16/15, 10/9, 9/8
| | 112 + 182 + 204
| | diatonic
|}


||||||~ Didymos's Genera ||
{| class="wikitable"
|| 32/31, 31/30, 5/4 || 55 + 57 + 386 || enharmonic ||
|-
|| 16/15, 25/24, 6/5 || 112 + 74 + 316 || chromatic ||
! colspan="3" | Ptolemy's Tunings
|| 16/15, 10/9, 9/8 || 112 + 182 + 204 || diatonic ||
|-
| | 46/45, 24/23, 5/4
| | 38 + 75 + 386
| | enharmonic
|-
| | 28/27, 15/14, 6/5
| | 63 + 119 + 316
| | soft chromatic
|-
| | 22/21, 12/11, 7/6
| | 81 + 151 + 267
| | intense chromatic
|-
| | 21/20, 10/9, 8/7
| | 85 + 182 + 231
| | soft diatonic
|-
| | 28/27, 8/7, 9/8
| | 63 + 231 + 204
| | diatonon toniaion
|-
| | 256/243, 9/8, 9/8
| | 90 + 204 + 204
| | diatonon ditoniaion
|-
| | 16/15, 9/8, 10/9
| | 112 + 182 + 204
| | intense diatonic
|-
| | 12/11, 11/10, 10/9
| | 151 + 165 + 182
| | equable diatonic
|}


||||||~ Ptolemy's Tunings ||
==Superparticular Intervals==
|| 46/45, 24/23, 5/4 || 38 + 75 + 386 || enharmonic ||
|| 28/27, 15/14, 6/5 || 63 + 119 + 316 || soft chromatic ||
|| 22/21, 12/11, 7/6 || 81 + 151 + 267 || intense chromatic ||
|| 21/20, 10/9, 8/7 || 85 + 182 + 231 || soft diatonic ||
|| 28/27, 8/7, 9/8 || 63 + 231 + 204 || diatonon toniaion ||
|| 256/243, 9/8, 9/8 || 90 + 204 + 204 || diatonon ditoniaion ||
|| 16/15, 9/8, 10/9 || 112 + 182 + 204 || intense diatonic ||
|| 12/11, 11/10, 10/9 || 151 + 165 + 182 || equable diatonic ||


==Superparticular Intervals==
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are [[superparticular|superparticular]].


In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are [[superparticular]].
=Ajnas (tetrachords in middle-eastern music)=


=Ajnas (tetrachords in middle-eastern music)=
The concept of the tetrachord is extensively used in [[Arabic,_Turkish,_Persian|middle eastern]] music theory. The arabic word for tetrachord is "jins" (singular form) or "ajnas" (plural form).


The concept of the tetrachord is extensively used in [[Arabic, Turkish, Persian|middle eastern]] music theory. The arabic word for tetrachord is "jins" (singular form) or "ajnas" (plural form).
See [http://www.maqamworld.com/ajnas.html maqamworld.com] for details.
See [[http://www.maqamworld.com/ajnas.html|maqamworld.com]] for details.


=Tetrachords Generalized=  
=Tetrachords Generalized=


All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals //a// &amp; //b//, &amp; then write our generalized tetrachord like this:
All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals ''a'' &amp; ''b'', &amp; then write our generalized tetrachord like this:


1/1, a, b, 4/3
1/1, a, b, 4/3
Line 88: Line 144:


1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1
1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1
[tetrachord #1], 9/8, [tetrachord #2]
[tetrachord #1], 9/8, [tetrachord #2]


Line 93: Line 150:


1/1, c, d, 4/3, 3/2, 3a/2, 3b/2, 2/1
1/1, c, d, 4/3, 3/2, 3a/2, 3b/2, 2/1
[tetrachord #2], 9/8, [tetrachord #1]
[tetrachord #2], 9/8, [tetrachord #1]


==Modes of a [tetrachord], 9/8, [tetrachord] scale==  
==Modes of a [tetrachord], 9/8, [tetrachord] scale==


|| mode 1 || 1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1 ||
{| class="wikitable"
|| mode 2 || 1/1, b/a, 4/3a, 3/2a, 3/2, 3b/2a, 2/a, 2/1 ||
|-
|| mode 3 || 1/1, 4b/3, 3b/2, 3a/2b, 3/2, 2/b, 2/b, 2/1 ||
| | mode 1
|| mode 4 || 1/1, 9/8, 9a/8, 9b/8, 3/2, 3a, 3b, 2/1 ||
| | 1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1
|| mode 5 || 1/1, a, b, 4/3, 4a/3, 4b/3, 16/9, 2/1 ||
|-
|| mode 6 || 1/1, b/a, 4/3a, 4/3, 4b/3a, 16/9a, 2/1 ||
| | mode 2
|| mode 7 || 1/1, 4/3b, 4a/3b, 4/3, 16/9b, 2/b, 2a/b, 2/1 ||
| | 1/1, b/a, 4/3a, 3/2a, 3/2, 3b/2a, 2/a, 2/1
|-
| | mode 3
| | 1/1, 4b/3, 3b/2, 3a/2b, 3/2, 2/b, 2/b, 2/1
|-
| | mode 4
| | 1/1, 9/8, 9a/8, 9b/8, 3/2, 3a, 3b, 2/1
|-
| | mode 5
| | 1/1, a, b, 4/3, 4a/3, 4b/3, 16/9, 2/1
|-
| | mode 6
| | 1/1, b/a, 4/3a, 4/3, 4b/3a, 16/9a, 2/1
|-
| | mode 7
| | 1/1, 4/3b, 4a/3b, 4/3, 16/9b, 2/b, 2a/b, 2/1
|}
This type of scale contains not only one tetrachord, but three.
This type of scale contains not only one tetrachord, but three.


1/1, a, b, 4/3 (mode 1, mode 5)
1/1, a, b, 4/3 (mode 1, mode 5)
1/1, b/a, 4/3a, 4/3 (mode 6)
1/1, b/a, 4/3a, 4/3 (mode 6)
1/1, 4/3b, 4a/3b, 4/3 (mode 7)
1/1, 4/3b, 4a/3b, 4/3 (mode 7)


These three tetrachords are all rotations of each other (they contain the same steps in a different order).
These three tetrachords are all rotations of each other (they contain the same steps in a different order).


==Tetrachord rotations==  
==Tetrachord rotations==


If you think of a tetrachord as three steps which total to a perfect fourth, then it makes sense that we can put those steps in any order. If we have a tetrachord with three step sizes, s, M, and L, then we have six rotations:
If you think of a tetrachord as three steps which total to a perfect fourth, then it makes sense that we can put those steps in any order. If we have a tetrachord with three step sizes, s, M, and L, then we have six rotations:
Line 122: Line 198:
ssL, sLs, Lss
ssL, sLs, Lss


And, if you have only one step size (as is the case in [[Porcupine]] temperament, for instance), you have an evenly-divided fourth, and only one possible rotation. (A tetrachord of this type can be found in [[22edo]] - see [[22edo tetrachords]].)
And, if you have only one step size (as is the case in [[Porcupine|Porcupine]] temperament, for instance), you have an evenly-divided fourth, and only one possible rotation. (A tetrachord of this type can be found in [[22edo|22edo]] - see [[22edo_tetrachords|22edo tetrachords]].)


=Tetrachords in equal temperaments=  
=Tetrachords in equal temperaments=


Naturally, any equally divided scale which contains an approximation of 4/3 will have its own family of tetrachords, starting with [[7edo]], which has one tetrachord:
Naturally, any equally divided scale which contains an approximation of 4/3 will have its own family of tetrachords, starting with [[7edo|7edo]], which has one tetrachord:


1 + 1 + 1
1 + 1 + 1
Line 132: Line 208:
We can use a notation with hyphens to specify tetrachords in equal temperaments. This tetrachord thus becomes:
We can use a notation with hyphens to specify tetrachords in equal temperaments. This tetrachord thus becomes:


||~ tetrachord notation ||~ cents between steps ||~ cents from 0 ||
{| class="wikitable"
|| 1-1-1 || 171 + 171 + 171 || 0, 171, 343, 514 ||
|-
! | tetrachord notation
! | cents between steps
! | cents from 0
|-
| | 1-1-1
| | 171 + 171 + 171
| | 0, 171, 343, 514
|}


==Tetrachords of [[10edo]]==  
==Tetrachords of [[10edo|10edo]]==


Another example: 10edo has an interval that can function as a perfect fourth at 4 degrees, measuring 480 cents. It can thus be divided into any arrangement of two 1-degree steps and one 2-degree step:
Another example: 10edo has an interval that can function as a perfect fourth at 4 degrees, measuring 480 cents. It can thus be divided into any arrangement of two 1-degree steps and one 2-degree step:


||~ tetrachord notation ||~ cents between ||~ cents from 0 ||
{| class="wikitable"
|| 1-1-2 || 120 + 120 + 240 || 0, 120, 240, 480 ||
|-
|| 1-2-1 || 120 + 240 + 120 || 0, 120, 360, 480 ||
! | tetrachord notation
|| 2-1-1 || 240 + 120 + 120 || 0, 240, 360, 480 ||
! | cents between
! | cents from 0
|-
| | 1-1-2
| | 120 + 120 + 240
| | 0, 120, 240, 480
|-
| | 1-2-1
| | 120 + 240 + 120
| | 0, 120, 360, 480
|-
| | 2-1-1
| | 240 + 120 + 120
| | 0, 240, 360, 480
|}
Note that these tetrachords are all rotations of each other, and in terms of Greek genera, they are all "diatonic" (because the largest interval, or characteristic interval, at 240 cents, is less than 250 cents).
Note that these tetrachords are all rotations of each other, and in terms of Greek genera, they are all "diatonic" (because the largest interval, or characteristic interval, at 240 cents, is less than 250 cents).


See also: [[Armodue armonia#Creating%20scales%20with%20Armodue:%20modal%20systems-Modal%20systems%20based%20on%20tetrachords%20and%20pentachords|16edo tetrachords]], [[17edo tetrachords]], [[22edo tetrachords]], [[Tricesimoprimal Tetrachordal Tesseract]] (tetrachords of [[31edo]]). If you'd like to wrestle some tetrachords out of an equal temperament, please consider making a page for them and linking to that page from here!
See also: [[Armodue_armonia#Creating scales with Armodue: modal systems-Modal systems based on tetrachords and pentachords|16edo tetrachords]], [[17edo_tetrachords|17edo tetrachords]], [[22edo_tetrachords|22edo tetrachords]], [[Tricesimoprimal_Tetrachordal_Tesseract|Tricesimoprimal Tetrachordal Tesseract]] (tetrachords of [[31edo|31edo]]). If you'd like to wrestle some tetrachords out of an equal temperament, please consider making a page for them and linking to that page from here!
 


=Dividing Other-Than-Perfect Fourths=  
=Dividing Other-Than-Perfect Fourths=


A composer may choose to treat other-than-perfect fourths as material for constructing tetrachords. Some of the low-number equal temperaments contain diminished or augmented fourths, but nothing resembling a perfect fourth: [[6edo]], [[8edo]], [[9edo]], [[11edo]], [[13edo]], [[16edo]]. Also, one may divide a just other-than-perfect fourth, such as 21/16, 43/32, 26/19, 11/8. At what point does the concept of "tetrachord" stop being useful?
A composer may choose to treat other-than-perfect fourths as material for constructing tetrachords. Some of the low-number equal temperaments contain diminished or augmented fourths, but nothing resembling a perfect fourth: [[6edo|6edo]], [[8edo|8edo]], [[9edo|9edo]], [[11edo|11edo]], [[13edo|13edo]], [[16edo|16edo]]. Also, one may divide a just other-than-perfect fourth, such as 21/16, 43/32, 26/19, 11/8. At what point does the concept of "tetrachord" stop being useful?


=Tetrachords And Non-Octave Scales=  
=Tetrachords And Non-Octave Scales=


Dividing a tenth into three equal parts generates a cycle of three fourths, they resembling perfect fourths when the division is done on a minor tenth.
Dividing a tenth into three equal parts generates a cycle of three fourths, they resembling perfect fourths when the division is done on a minor tenth.


An example with [[Carlos Gamma]]:
An example with [[Carlos_Gamma|Carlos Gamma]]:
[[http://www.seraph.it/dep/det/GloriousGuitars.mp3|Glorious Guitars]] by [[Carlo Serafini]] ([[http://www.seraph.it/blog_files/e8a36018d6b782c8ff7bc2416fa7ea5b-47.html|blog entry]])</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;tetrachord&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The word &amp;quot;tetrachord&amp;quot; usually refers to the interval of a perfect fourth (just or not) divided into three subintervals by the interposition of two additional notes.&lt;br /&gt;
&lt;br /&gt;
John Chalmers, in &lt;a class="wiki_link_ext" href="http://eamusic.dartmouth.edu/%7Elarry/published_articles/divisions_of_the_tetrachord/index.html" rel="nofollow"&gt;Divisions of the Tetrachord&lt;/a&gt;, tells us:&lt;br /&gt;
&lt;br /&gt;
&lt;em&gt;Tetrachords are modules from which more complex scalar and harmonic structures may be built. These structures range from the simple heptatonic scales known to the classical civilizations of the eastern Mediterranean to experimental gamuts with many tones. Furthermore, the traditional scales of much of the world's music, including that of Europe, the &lt;a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian"&gt;Near East&lt;/a&gt;, the Catholic and Orthodox churches, Iran and India, are still based on tetrachords. Tetrachords are thus basic to an understanding of much of the world's music.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
Related pages: &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/17edo%20tetrachords"&gt;17edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/Tricesimoprimal%20Tetrachordal%20Tesseract"&gt;Tricesimoprimal Tetrachordal Tesseract&lt;/a&gt;, &lt;a class="wiki_link" href="/Armodue%20armonia#Creating%20scales%20with%20Armodue:%20modal%20systems-Modal%20systems%20based%20on%20tetrachords%20and%20pentachords"&gt;16edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/Gallery%20of%20Wakalixes#Divisions%20of%20the%20Tetrachord"&gt;Wakalix tetrachords&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextTocRule:30:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:30 --&gt;&lt;!-- ws:start:WikiTextTocRule:31: --&gt;&lt;a href="#Ancient Greek Genera"&gt;Ancient Greek Genera&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:31 --&gt;&lt;!-- ws:start:WikiTextTocRule:32: --&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt; | &lt;a href="#Ajnas (tetrachords in middle-eastern music)"&gt;Ajnas (tetrachords in middle-eastern music)&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt; | &lt;a href="#Tetrachords Generalized"&gt;Tetrachords Generalized&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;!-- ws:start:WikiTextTocRule:41: --&gt;&lt;!-- ws:end:WikiTextTocRule:41 --&gt;&lt;!-- ws:start:WikiTextTocRule:42: --&gt; | &lt;a href="#Tetrachords in equal temperaments"&gt;Tetrachords in equal temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:42 --&gt;&lt;!-- ws:start:WikiTextTocRule:43: --&gt;&lt;!-- ws:end:WikiTextTocRule:43 --&gt;&lt;!-- ws:start:WikiTextTocRule:44: --&gt; | &lt;a href="#Dividing Other-Than-Perfect Fourths"&gt;Dividing Other-Than-Perfect Fourths&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:44 --&gt;&lt;!-- ws:start:WikiTextTocRule:45: --&gt; | &lt;a href="#Tetrachords And Non-Octave Scales"&gt;Tetrachords And Non-Octave Scales&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:45 --&gt;&lt;!-- ws:start:WikiTextTocRule:46: --&gt;
&lt;!-- ws:end:WikiTextTocRule:46 --&gt;&lt;hr /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Ancient Greek Genera"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Ancient Greek Genera&lt;/h1&gt;
&lt;br /&gt;
The ancient Greeks distinguished between three primary genera depending on the size of the largest interval, the characteristic interval, or CI-- the enharmonic, chromatic, and diatonic. Modern theorists have added a fourth genera, called hyperenharmonic.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="Ancient Greek Genera--hyperenharmonic genus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;hyperenharmonic genus&lt;/h3&gt;
The CI is larger than 425 cents.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc2"&gt;&lt;a name="Ancient Greek Genera--enharmonic genus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;enharmonic genus&lt;/h3&gt;
The CI approximates a major third, falling between 425 cents and 375 cents.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc3"&gt;&lt;a name="Ancient Greek Genera--chromatic genus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;chromatic genus&lt;/h3&gt;
The CI approximates a minor or neutral third, falling between 375 cents and 250 cents.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc4"&gt;&lt;a name="Ancient Greek Genera--diatonic genus"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;diatonic genus&lt;/h3&gt;
The CI (and the other intervals) approximates a &amp;quot;tone,&amp;quot; measuring less than 250 cents.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Ancient Greek Genera-Ptolemy's Catalog"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Ptolemy's Catalog&lt;/h2&gt;
&lt;br /&gt;
In the &lt;em&gt;Harmonics&lt;/em&gt;, Ptolemy catalogs several historical tetrachords and attributes them to particular theorists.&lt;br /&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th colspan="3"&gt;Archytas's Genera&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 36/35, 5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 49 + 386&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;enharmonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 243/224, 32/27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 141 + 294&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 8/7, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 231 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th colspan="3"&gt;Eratosthenes's Genera&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40/39, 39/38, 19/15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;44 + 45 + 409&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;enharmonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20/19, 19/18, 6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;89 + 94 + 316&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;256/243, 9/8, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;90 + 204 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th colspan="3"&gt;Didymos's Genera&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32/31, 31/30, 5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;55 + 57 + 386&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;enharmonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/15, 25/24, 6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;112 + 74 + 316&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/15, 10/9, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;112 + 182 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th colspan="3"&gt;Ptolemy's Tunings&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46/45, 24/23, 5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;38 + 75 + 386&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;enharmonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 15/14, 6/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 119 + 316&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;soft chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22/21, 12/11, 7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81 + 151 + 267&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;intense chromatic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21/20, 10/9, 8/7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;85 + 182 + 231&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;soft diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28/27, 8/7, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;63 + 231 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonon toniaion&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;256/243, 9/8, 9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;90 + 204 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;diatonon ditoniaion&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16/15, 9/8, 10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;112 + 182 + 204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;intense diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12/11, 11/10, 10/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;151 + 165 + 182&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;equable diatonic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc6"&gt;&lt;a name="Ancient Greek Genera-Superparticular Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Superparticular Intervals&lt;/h2&gt;
&lt;br /&gt;
In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are &lt;a class="wiki_link" href="/superparticular"&gt;superparticular&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc7"&gt;&lt;a name="Ajnas (tetrachords in middle-eastern music)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;Ajnas (tetrachords in middle-eastern music)&lt;/h1&gt;
&lt;br /&gt;
The concept of the tetrachord is extensively used in &lt;a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian"&gt;middle eastern&lt;/a&gt; music theory. The arabic word for tetrachord is &amp;quot;jins&amp;quot; (singular form) or &amp;quot;ajnas&amp;quot; (plural form).&lt;br /&gt;
See &lt;a class="wiki_link_ext" href="http://www.maqamworld.com/ajnas.html" rel="nofollow"&gt;maqamworld.com&lt;/a&gt; for details.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc8"&gt;&lt;a name="Tetrachords Generalized"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Tetrachords Generalized&lt;/h1&gt;
&lt;br /&gt;
All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals &lt;em&gt;a&lt;/em&gt; &amp;amp; &lt;em&gt;b&lt;/em&gt;, &amp;amp; then write our generalized tetrachord like this:&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3&lt;br /&gt;
&lt;br /&gt;
We can build a heptatonic scale by copying this tetrachord at the perfect fifth. Thus:&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1&lt;br /&gt;
&lt;br /&gt;
Between 3/2 and 4/3, we have 9/8, so another way to write it would be:&lt;br /&gt;
&lt;br /&gt;
[tetrachord], 9/8, [tetrachord]&lt;br /&gt;
&lt;br /&gt;
Of course, a tetrachord doesn't need to be paired with its copy. You might pair it with a dissimilar tetrachord (eg. 1/1, c, d, 4/3):&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1&lt;br /&gt;
[tetrachord #1], 9/8, [tetrachord #2]&lt;br /&gt;
&lt;br /&gt;
Of course, you can also put them in opposite order:&lt;br /&gt;
&lt;br /&gt;
1/1, c, d, 4/3, 3/2, 3a/2, 3b/2, 2/1&lt;br /&gt;
[tetrachord #2], 9/8, [tetrachord #1]&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc9"&gt;&lt;a name="Tetrachords Generalized-Modes of a [tetrachord], 9/8, [tetrachord] scale"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Modes of a [tetrachord], 9/8, [tetrachord] scale&lt;/h2&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1, b/a, 4/3a, 3/2a, 3/2, 3b/2a, 2/a, 2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1, 4b/3, 3b/2, 3a/2b, 3/2, 2/b, 2/b, 2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1, 9/8, 9a/8, 9b/8, 3/2, 3a, 3b, 2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1, a, b, 4/3, 4a/3, 4b/3, 16/9, 2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1, b/a, 4/3a, 4/3, 4b/3a, 16/9a, 2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;mode 7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1, 4/3b, 4a/3b, 4/3, 16/9b, 2/b, 2a/b, 2/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
This type of scale contains not only one tetrachord, but three.&lt;br /&gt;
&lt;br /&gt;
1/1, a, b, 4/3 (mode 1, mode 5)&lt;br /&gt;
1/1, b/a, 4/3a, 4/3 (mode 6)&lt;br /&gt;
1/1, 4/3b, 4a/3b, 4/3 (mode 7)&lt;br /&gt;
&lt;br /&gt;
These three tetrachords are all rotations of each other (they contain the same steps in a different order).&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc10"&gt;&lt;a name="Tetrachords Generalized-Tetrachord rotations"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Tetrachord rotations&lt;/h2&gt;
&lt;br /&gt;
If you think of a tetrachord as three steps which total to a perfect fourth, then it makes sense that we can put those steps in any order. If we have a tetrachord with three step sizes, s, M, and L, then we have six rotations:&lt;br /&gt;
&lt;br /&gt;
sML, MsL, sLM, MLs, LsM, LMs&lt;br /&gt;
&lt;br /&gt;
If you have only two step sizes, s and L, then you have three possible rotations:&lt;br /&gt;
&lt;br /&gt;
ssL, sLs, Lss&lt;br /&gt;
&lt;br /&gt;
And, if you have only one step size (as is the case in &lt;a class="wiki_link" href="/Porcupine"&gt;Porcupine&lt;/a&gt; temperament, for instance), you have an evenly-divided fourth, and only one possible rotation. (A tetrachord of this type can be found in &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; - see &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;.)&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc11"&gt;&lt;a name="Tetrachords in equal temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Tetrachords in equal temperaments&lt;/h1&gt;
&lt;br /&gt;
Naturally, any equally divided scale which contains an approximation of 4/3 will have its own family of tetrachords, starting with &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;, which has one tetrachord:&lt;br /&gt;
&lt;br /&gt;
1 + 1 + 1&lt;br /&gt;
&lt;br /&gt;
We can use a notation with hyphens to specify tetrachords in equal temperaments. This tetrachord thus becomes:&lt;br /&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;tetrachord notation&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;cents between steps&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;cents from 0&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1-1-1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;171 + 171 + 171&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0, 171, 343, 514&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc12"&gt;&lt;a name="Tetrachords in equal temperaments-Tetrachords of 10edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;Tetrachords of &lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt;&lt;/h2&gt;
&lt;br /&gt;
Another example: 10edo has an interval that can function as a perfect fourth at 4 degrees, measuring 480 cents. It can thus be divided into any arrangement of two 1-degree steps and one 2-degree step:&lt;br /&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;tetrachord notation&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;cents between&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;cents from 0&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1-1-2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;120 + 120 + 240&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0, 120, 240, 480&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1-2-1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;120 + 240 + 120&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0, 120, 360, 480&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2-1-1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240 + 120 + 120&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0, 240, 360, 480&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


Note that these tetrachords are all rotations of each other, and in terms of Greek genera, they are all &amp;quot;diatonic&amp;quot; (because the largest interval, or characteristic interval, at 240 cents, is less than 250 cents).&lt;br /&gt;
[http://www.seraph.it/dep/det/GloriousGuitars.mp3 Glorious Guitars] by [[Carlo_Serafini|Carlo Serafini]] ([http://www.seraph.it/blog_files/e8a36018d6b782c8ff7bc2416fa7ea5b-47.html blog entry])
&lt;br /&gt;
[[Category:list]]
See also: &lt;a class="wiki_link" href="/Armodue%20armonia#Creating%20scales%20with%20Armodue:%20modal%20systems-Modal%20systems%20based%20on%20tetrachords%20and%20pentachords"&gt;16edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/17edo%20tetrachords"&gt;17edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo%20tetrachords"&gt;22edo tetrachords&lt;/a&gt;, &lt;a class="wiki_link" href="/Tricesimoprimal%20Tetrachordal%20Tesseract"&gt;Tricesimoprimal Tetrachordal Tesseract&lt;/a&gt; (tetrachords of &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;). If you'd like to wrestle some tetrachords out of an equal temperament, please consider making a page for them and linking to that page from here!&lt;br /&gt;
[[Category:scale]]
&lt;br /&gt;
[[Category:tetrachord]]
&lt;br /&gt;
[[Category:theory]]
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc13"&gt;&lt;a name="Dividing Other-Than-Perfect Fourths"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;Dividing Other-Than-Perfect Fourths&lt;/h1&gt;
&lt;br /&gt;
A composer may choose to treat other-than-perfect fourths as material for constructing tetrachords. Some of the low-number equal temperaments contain diminished or augmented fourths, but nothing resembling a perfect fourth: &lt;a class="wiki_link" href="/6edo"&gt;6edo&lt;/a&gt;, &lt;a class="wiki_link" href="/8edo"&gt;8edo&lt;/a&gt;, &lt;a class="wiki_link" href="/9edo"&gt;9edo&lt;/a&gt;, &lt;a class="wiki_link" href="/11edo"&gt;11edo&lt;/a&gt;, &lt;a class="wiki_link" href="/13edo"&gt;13edo&lt;/a&gt;, &lt;a class="wiki_link" href="/16edo"&gt;16edo&lt;/a&gt;. Also, one may divide a just other-than-perfect fourth, such as 21/16, 43/32, 26/19, 11/8. At what point does the concept of &amp;quot;tetrachord&amp;quot; stop being useful?&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc14"&gt;&lt;a name="Tetrachords And Non-Octave Scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;Tetrachords And Non-Octave Scales&lt;/h1&gt;
&lt;br /&gt;
Dividing a tenth into three equal parts generates a cycle of three fourths, they resembling perfect fourths when the division is done on a minor tenth.&lt;br /&gt;
&lt;br /&gt;
An example with &lt;a class="wiki_link" href="/Carlos%20Gamma"&gt;Carlos Gamma&lt;/a&gt;:&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.seraph.it/dep/det/GloriousGuitars.mp3" rel="nofollow"&gt;Glorious Guitars&lt;/a&gt; by &lt;a class="wiki_link" href="/Carlo%20Serafini"&gt;Carlo Serafini&lt;/a&gt; (&lt;a class="wiki_link_ext" href="http://www.seraph.it/blog_files/e8a36018d6b782c8ff7bc2416fa7ea5b-47.html" rel="nofollow"&gt;blog entry&lt;/a&gt;)&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

The word "tetrachord" usually refers to the interval of a perfect fourth (just or not) divided into three subintervals by the interposition of two additional notes.

John Chalmers, in Divisions of the Tetrachord, tells us:

Tetrachords are modules from which more complex scalar and harmonic structures may be built. These structures range from the simple heptatonic scales known to the classical civilizations of the eastern Mediterranean to experimental gamuts with many tones. Furthermore, the traditional scales of much of the world's music, including that of Europe, the Near East, the Catholic and Orthodox churches, Iran and India, are still based on tetrachords. Tetrachords are thus basic to an understanding of much of the world's music.

Related pages: 22edo tetrachords, 17edo tetrachords, Tricesimoprimal Tetrachordal Tesseract, 16edo tetrachords, Wakalix tetrachords


Ancient Greek Genera

The ancient Greeks distinguished between three primary genera depending on the size of the largest interval, the characteristic interval, or CI-- the enharmonic, chromatic, and diatonic. Modern theorists have added a fourth genera, called hyperenharmonic.

hyperenharmonic genus

The CI is larger than 425 cents.

enharmonic genus

The CI approximates a major third, falling between 425 cents and 375 cents.

chromatic genus

The CI approximates a minor or neutral third, falling between 375 cents and 250 cents.

diatonic genus

The CI (and the other intervals) approximates a "tone," measuring less than 250 cents.

Ptolemy's Catalog

In the Harmonics, Ptolemy catalogs several historical tetrachords and attributes them to particular theorists.

Archytas's Genera
28/27, 36/35, 5/4 63 + 49 + 386 enharmonic
28/27, 243/224, 32/27 63 + 141 + 294 chromatic
28/27, 8/7, 9/8 63 + 231 + 204 diatonic
Eratosthenes's Genera
40/39, 39/38, 19/15 44 + 45 + 409 enharmonic
20/19, 19/18, 6/5 89 + 94 + 316 chromatic
256/243, 9/8, 9/8 90 + 204 + 204 diatonic
Didymos's Genera
32/31, 31/30, 5/4 55 + 57 + 386 enharmonic
16/15, 25/24, 6/5 112 + 74 + 316 chromatic
16/15, 10/9, 9/8 112 + 182 + 204 diatonic
Ptolemy's Tunings
46/45, 24/23, 5/4 38 + 75 + 386 enharmonic
28/27, 15/14, 6/5 63 + 119 + 316 soft chromatic
22/21, 12/11, 7/6 81 + 151 + 267 intense chromatic
21/20, 10/9, 8/7 85 + 182 + 231 soft diatonic
28/27, 8/7, 9/8 63 + 231 + 204 diatonon toniaion
256/243, 9/8, 9/8 90 + 204 + 204 diatonon ditoniaion
16/15, 9/8, 10/9 112 + 182 + 204 intense diatonic
12/11, 11/10, 10/9 151 + 165 + 182 equable diatonic

Superparticular Intervals

In ancient Greek descriptions of tetrachords in use, we find a preference for tetrachordal steps that are superparticular.

Ajnas (tetrachords in middle-eastern music)

The concept of the tetrachord is extensively used in middle eastern music theory. The arabic word for tetrachord is "jins" (singular form) or "ajnas" (plural form).

See maqamworld.com for details.

Tetrachords Generalized

All tetrachords share the interval of a perfect fourth, but they vary in the other two intervals. Assuming a just fourth, we can name the two variable intervals a & b, & then write our generalized tetrachord like this:

1/1, a, b, 4/3

We can build a heptatonic scale by copying this tetrachord at the perfect fifth. Thus:

1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1

Between 3/2 and 4/3, we have 9/8, so another way to write it would be:

[tetrachord], 9/8, [tetrachord]

Of course, a tetrachord doesn't need to be paired with its copy. You might pair it with a dissimilar tetrachord (eg. 1/1, c, d, 4/3):

1/1, a, b, 4/3, 3/2, 3c/2, 3d/2, 2/1

[tetrachord #1], 9/8, [tetrachord #2]

Of course, you can also put them in opposite order:

1/1, c, d, 4/3, 3/2, 3a/2, 3b/2, 2/1

[tetrachord #2], 9/8, [tetrachord #1]

Modes of a [tetrachord], 9/8, [tetrachord] scale

mode 1 1/1, a, b, 4/3, 3/2, 3a/2, 3b/2, 2/1
mode 2 1/1, b/a, 4/3a, 3/2a, 3/2, 3b/2a, 2/a, 2/1
mode 3 1/1, 4b/3, 3b/2, 3a/2b, 3/2, 2/b, 2/b, 2/1
mode 4 1/1, 9/8, 9a/8, 9b/8, 3/2, 3a, 3b, 2/1
mode 5 1/1, a, b, 4/3, 4a/3, 4b/3, 16/9, 2/1
mode 6 1/1, b/a, 4/3a, 4/3, 4b/3a, 16/9a, 2/1
mode 7 1/1, 4/3b, 4a/3b, 4/3, 16/9b, 2/b, 2a/b, 2/1

This type of scale contains not only one tetrachord, but three.

1/1, a, b, 4/3 (mode 1, mode 5)

1/1, b/a, 4/3a, 4/3 (mode 6)

1/1, 4/3b, 4a/3b, 4/3 (mode 7)

These three tetrachords are all rotations of each other (they contain the same steps in a different order).

Tetrachord rotations

If you think of a tetrachord as three steps which total to a perfect fourth, then it makes sense that we can put those steps in any order. If we have a tetrachord with three step sizes, s, M, and L, then we have six rotations:

sML, MsL, sLM, MLs, LsM, LMs

If you have only two step sizes, s and L, then you have three possible rotations:

ssL, sLs, Lss

And, if you have only one step size (as is the case in Porcupine temperament, for instance), you have an evenly-divided fourth, and only one possible rotation. (A tetrachord of this type can be found in 22edo - see 22edo tetrachords.)

Tetrachords in equal temperaments

Naturally, any equally divided scale which contains an approximation of 4/3 will have its own family of tetrachords, starting with 7edo, which has one tetrachord:

1 + 1 + 1

We can use a notation with hyphens to specify tetrachords in equal temperaments. This tetrachord thus becomes:

tetrachord notation cents between steps cents from 0
1-1-1 171 + 171 + 171 0, 171, 343, 514

Tetrachords of 10edo

Another example: 10edo has an interval that can function as a perfect fourth at 4 degrees, measuring 480 cents. It can thus be divided into any arrangement of two 1-degree steps and one 2-degree step:

tetrachord notation cents between cents from 0
1-1-2 120 + 120 + 240 0, 120, 240, 480
1-2-1 120 + 240 + 120 0, 120, 360, 480
2-1-1 240 + 120 + 120 0, 240, 360, 480

Note that these tetrachords are all rotations of each other, and in terms of Greek genera, they are all "diatonic" (because the largest interval, or characteristic interval, at 240 cents, is less than 250 cents).

See also: 16edo tetrachords, 17edo tetrachords, 22edo tetrachords, Tricesimoprimal Tetrachordal Tesseract (tetrachords of 31edo). If you'd like to wrestle some tetrachords out of an equal temperament, please consider making a page for them and linking to that page from here!

Dividing Other-Than-Perfect Fourths

A composer may choose to treat other-than-perfect fourths as material for constructing tetrachords. Some of the low-number equal temperaments contain diminished or augmented fourths, but nothing resembling a perfect fourth: 6edo, 8edo, 9edo, 11edo, 13edo, 16edo. Also, one may divide a just other-than-perfect fourth, such as 21/16, 43/32, 26/19, 11/8. At what point does the concept of "tetrachord" stop being useful?

Tetrachords And Non-Octave Scales

Dividing a tenth into three equal parts generates a cycle of three fourths, they resembling perfect fourths when the division is done on a minor tenth.

An example with Carlos Gamma:

Glorious Guitars by Carlo Serafini (blog entry)