User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 9: | Line 9: | ||
What follows is a comparison of stretched-octave 31edo tunings. | What follows is a comparison of stretched-octave 31edo tunings. | ||
; | ; 31edo | ||
* Step size: 38.710{{c}}, octave size: 1200.0{{c}} | * Step size: 38.710{{c}}, octave size: 1200.0{{c}} | ||
Pure-octaves 31edo approximates all harmonics up to 16 within NNN{{c}}. | Pure-octaves 31edo approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in equal|31|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|31|2|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31edo}} | ||
{{Harmonics in equal|31|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in | {{Harmonics in equal|31|2|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31edo (continued)}} | ||
; [[WE|31et, 13-limit WE tuning]] | ; [[WE|31et, 13-limit WE tuning]] | ||
* Step size: 38.725{{c}}, octave size: | * Step size: 38.725{{c}}, octave size: 1200.5{{c}} | ||
Stretching the octave of 31edo by around | Stretching the octave of 31edo by around 0.5{{c}} results in slightly improved primes 3, 7 and 11, but slightly worse primes 2, 5 and 13. This approximates all harmonics up to 16 within 12.8{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | ||
{{Harmonics in cet|38.725|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, 13-limit WE tuning}} | {{Harmonics in cet|38.725|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, 13-limit WE tuning}} | ||
{{Harmonics in cet|38.725|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, SUBGROUP WE tuning (continued)}} | {{Harmonics in cet|38.725|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 31et, SUBGROUP WE tuning (continued)}} | ||
Line 24: | Line 24: | ||
* Step size: 38.737{{c}}, octave size: NNN{{c}} | * Step size: 38.737{{c}}, octave size: NNN{{c}} | ||
Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 127zpi does this. | Stretching the octave of 31edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 127zpi does this. | ||
{{Harmonics in cet| | {{Harmonics in cet|38.737|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 127zpi}} | ||
{{Harmonics in cet| | {{Harmonics in cet|38.737|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 127zpi (continued)}} | ||
; [[WE|31et, 11-limit WE tuning]] | ; [[WE|31et, 11-limit WE tuning]] |
Revision as of 05:11, 24 August 2025
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
What follows is a comparison of stretched-octave 31edo tunings.
- 31edo
- Step size: 38.710 ¢, octave size: 1200.0 ¢
Pure-octaves 31edo approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -5.2 | +0.0 | +0.8 | -5.2 | -1.1 | +0.0 | -10.4 | +0.8 | -9.4 | -5.2 |
Relative (%) | +0.0 | -13.4 | +0.0 | +2.0 | -13.4 | -2.8 | +0.0 | -26.8 | +2.0 | -24.2 | -13.4 | |
Steps (reduced) |
31 (0) |
49 (18) |
62 (0) |
72 (10) |
80 (18) |
87 (25) |
93 (0) |
98 (5) |
103 (10) |
107 (14) |
111 (18) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +11.1 | -1.1 | -4.4 | +0.0 | +11.2 | -10.4 | +12.2 | +0.8 | -6.3 | -9.4 | -8.9 | -5.2 |
Relative (%) | +28.6 | -2.8 | -11.4 | +0.0 | +28.9 | -26.8 | +31.4 | +2.0 | -16.2 | -24.2 | -23.0 | -13.4 | |
Steps (reduced) |
115 (22) |
118 (25) |
121 (28) |
124 (0) |
127 (3) |
129 (5) |
132 (8) |
134 (10) |
136 (12) |
138 (14) |
140 (16) |
142 (18) |
- Step size: 38.725 ¢, octave size: 1200.5 ¢
Stretching the octave of 31edo by around 0.5 ¢ results in slightly improved primes 3, 7 and 11, but slightly worse primes 2, 5 and 13. This approximates all harmonics up to 16 within 12.8 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.5 | -4.4 | +0.9 | +1.9 | -4.0 | +0.2 | +1.4 | -8.9 | +2.4 | -7.7 | -3.5 |
Relative (%) | +1.2 | -11.4 | +2.5 | +4.9 | -10.2 | +0.6 | +3.7 | -22.9 | +6.1 | -20.0 | -9.0 | |
Step | 31 | 49 | 62 | 72 | 80 | 87 | 93 | 98 | 103 | 107 | 111 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.8 | +0.7 | -2.5 | +1.9 | +13.1 | -8.4 | +14.2 | +2.8 | -4.2 | -7.3 | -6.8 | -3.0 |
Relative (%) | +33.2 | +1.9 | -6.6 | +4.9 | +33.9 | -21.7 | +36.6 | +7.3 | -10.8 | -18.8 | -17.5 | -7.8 | |
Step | 115 | 118 | 121 | 124 | 127 | 129 | 132 | 134 | 136 | 138 | 140 | 142 |
- Step size: 38.737 ¢, octave size: NNN ¢
Stretching the octave of 31edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 127zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -3.8 | +1.7 | +2.8 | -3.0 | +1.3 | +2.5 | -7.7 | +3.6 | -6.5 | -2.1 |
Relative (%) | +2.2 | -9.9 | +4.4 | +7.1 | -7.7 | +3.3 | +6.6 | -19.8 | +9.3 | -16.7 | -5.5 | |
Step | 31 | 49 | 62 | 72 | 80 | 87 | 93 | 98 | 103 | 107 | 111 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +14.2 | +2.1 | -1.1 | +3.4 | +14.6 | -6.8 | +15.8 | +4.4 | -2.5 | -5.6 | -5.1 | -1.3 |
Relative (%) | +36.7 | +5.5 | -2.8 | +8.7 | +37.8 | -17.6 | +40.7 | +11.5 | -6.6 | -14.5 | -13.2 | -3.4 | |
Step | 115 | 118 | 121 | 124 | 127 | 129 | 132 | 134 | 136 | 138 | 140 | 142 |
- Step size: 38.748 ¢, octave size: NNN ¢
_Stretching the octave of 31edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 11-limit WE tuning and 11-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | -3.3 | +2.4 | +3.5 | -2.1 | +2.3 | +3.6 | -6.6 | +4.7 | -5.3 | -0.9 |
Relative (%) | +3.1 | -8.5 | +6.1 | +9.1 | -5.5 | +5.8 | +9.2 | -17.0 | +12.2 | -13.6 | -2.4 | |
Step | 31 | 49 | 62 | 72 | 80 | 87 | 93 | 98 | 103 | 107 | 111 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.5 | +3.4 | +0.2 | +4.8 | +16.0 | -5.4 | +17.2 | +5.9 | -1.1 | -4.1 | -3.6 | +0.3 |
Relative (%) | +40.0 | +8.9 | +0.6 | +12.3 | +41.4 | -14.0 | +44.4 | +15.3 | -2.7 | -10.6 | -9.2 | +0.7 | |
Step | 115 | 118 | 121 | 124 | 127 | 129 | 132 | 134 | 136 | 138 | 140 | 142 |
- Step size: NNN ¢, octave size: NNN ¢
Stretching the octave of 31edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 111ed12 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.4 | -2.9 | +2.9 | +4.1 | -1.4 | +3.0 | +4.3 | -5.8 | +5.6 | -4.4 | +0.0 |
Relative (%) | +3.7 | -7.5 | +7.5 | +10.7 | -3.7 | +7.7 | +11.2 | -14.9 | +14.4 | -11.3 | +0.0 | |
Steps (reduced) |
31 (31) |
49 (49) |
62 (62) |
72 (72) |
80 (80) |
87 (87) |
93 (93) |
98 (98) |
103 (103) |
107 (107) |
111 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +16.5 | +4.4 | +1.2 | +5.8 | +17.1 | -4.3 | +18.3 | +7.0 | +0.1 | -2.9 | -2.4 | +1.4 |
Relative (%) | +42.5 | +11.4 | +3.2 | +14.9 | +44.1 | -11.2 | +47.3 | +18.2 | +0.2 | -7.6 | -6.2 | +3.7 | |
Steps (reduced) |
115 (4) |
118 (7) |
121 (10) |
124 (13) |
127 (16) |
129 (18) |
132 (21) |
134 (23) |
136 (25) |
138 (27) |
140 (29) |
142 (31) |
- Step size: NNN ¢, octave size: NNN ¢
Stretching the octave of 31edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 80ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.0 | -2.0 | +4.0 | +5.4 | +0.0 | +4.6 | +6.0 | -4.0 | +7.5 | -2.5 | +2.0 |
Relative (%) | +5.2 | -5.2 | +10.4 | +14.0 | +0.0 | +11.7 | +15.5 | -10.4 | +19.2 | -6.3 | +5.2 | |
Steps (reduced) |
31 (31) |
49 (49) |
62 (62) |
72 (72) |
80 (0) |
87 (7) |
93 (13) |
98 (18) |
103 (23) |
107 (27) |
111 (31) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +18.5 | +6.6 | +3.4 | +8.0 | -19.4 | -2.0 | -18.1 | +9.5 | +2.5 | -0.4 | +0.1 | +4.0 |
Relative (%) | +47.8 | +16.9 | +8.9 | +20.7 | -50.0 | -5.2 | -46.6 | +24.4 | +6.6 | -1.1 | +0.4 | +10.4 | |
Steps (reduced) |
115 (35) |
118 (38) |
121 (41) |
124 (44) |
126 (46) |
129 (49) |
131 (51) |
134 (54) |
136 (56) |
138 (58) |
140 (60) |
142 (62) |
- Step size: NNN ¢, octave size: NNN ¢
Stretching the octave of 31edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 25ed7/4 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.3 | -3.1 | +2.7 | +3.9 | -1.7 | +2.7 | +4.0 | -6.1 | +5.2 | -4.7 | -0.4 |
Relative (%) | +3.5 | -7.9 | +6.9 | +10.1 | -4.4 | +6.9 | +10.4 | -15.8 | +13.5 | -12.2 | -0.9 | |
Steps (reduced) |
31 (6) |
49 (24) |
62 (12) |
72 (22) |
80 (5) |
87 (12) |
93 (18) |
98 (23) |
103 (3) |
107 (7) |
111 (11) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +16.1 | +4.0 | +0.8 | +5.4 | +16.7 | -4.8 | +17.9 | +6.6 | -0.4 | -3.4 | -2.8 | +1.0 |
Relative (%) | +41.5 | +10.4 | +2.2 | +13.9 | +43.0 | -12.3 | +46.2 | +17.0 | -0.9 | -8.8 | -7.4 | +2.5 | |
Steps (reduced) |
115 (15) |
118 (18) |
121 (21) |
124 (24) |
127 (2) |
129 (4) |
132 (7) |
134 (9) |
136 (11) |
138 (13) |
140 (15) |
142 (17) |