User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 8: | Line 8: | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
What follows is a comparison of stretched- and compressed-octave 22edo tunings. | What follows is a comparison of stretched- and compressed-octave 22edo tunings. | ||
; 22edo | ; 22edo | ||
Line 38: | Line 26: | ||
{{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}} | {{Harmonics in cet|54.483|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi}} | ||
{{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}} | {{Harmonics in cet|54.483|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in 80zpi (continued)}} | ||
; [[35edt]] | |||
* Step size: NNN{{c}}, octave size: NNN{{c}} | |||
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | |||
{{Harmonics in equal|57|6|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}} | |||
{{Harmonics in equal|57|6|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}} | |||
; [[13edf]] | ; [[13edf]] | ||
Line 50: | Line 44: | ||
{{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}} | {{Harmonics in equal|35|3|1|columns=11|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}} | {{Harmonics in equal|35|3|1|columns=12|start=12|collapsed=true|intervals=integer|title=Approximation of harmonics in EDONOI (continued)}} | ||
13edf | |||
35edt |
Revision as of 01:10, 24 August 2025
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
What follows is a comparison of stretched- and compressed-octave 22edo tunings.
- 22edo
- Step size: 54.545 ¢, octave size: 1200.0 ¢
Pure-octaves 22edo approximates all harmonics up to 16 within NNN ¢. The optimal 13-limit WE tuning has octaves only 0.01 ¢ different from pure-octaves 22edo, and the 13-limit TE tuning has octaves only 0.08 ¢ different, so by those metrics pure-octaves 22edo might be considered already optimal.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +7.1 | +0.0 | -4.5 | +7.1 | +13.0 | +0.0 | +14.3 | -4.5 | -5.9 | +7.1 |
Relative (%) | +0.0 | +13.1 | +0.0 | -8.2 | +13.1 | +23.8 | +0.0 | +26.2 | -8.2 | -10.7 | +13.1 | |
Steps (reduced) |
22 (0) |
35 (13) |
44 (0) |
51 (7) |
57 (13) |
62 (18) |
66 (0) |
70 (4) |
73 (7) |
76 (10) |
79 (13) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -22.3 | +13.0 | +2.6 | +0.0 | +4.1 | +14.3 | -24.8 | -4.5 | +20.1 | -5.9 | +26.3 | +7.1 |
Relative (%) | -41.0 | +23.8 | +4.8 | +0.0 | +7.6 | +26.2 | -45.4 | -8.2 | +36.9 | -10.7 | +48.2 | +13.1 | |
Steps (reduced) |
81 (15) |
84 (18) |
86 (20) |
88 (0) |
90 (2) |
92 (4) |
93 (5) |
95 (7) |
97 (9) |
98 (10) |
100 (12) |
101 (13) |
- Step size: 54.494 ¢, octave size: NNN ¢
Compressing the octave of 22edo by around half a cent results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 11-limit WE tuning and 11-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 |
Relative (%) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | -2.0 | |
Step | 12 | 19 | 24 | 28 | 31 | 34 | 36 | 38 | 40 | 42 | 43 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 |
Relative (%) | -40.5 | +31.2 | +11.7 | +0.0 | -5.0 | -3.9 | +2.5 | +13.7 | +29.2 | +48.7 | -28.3 | -2.0 | |
Step | 44 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 54 | 55 |
- Step size: 54.483 ¢, octave size: NNN ¢
Compressing the octave of 22edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 80zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.4 | +4.9 | -2.7 | -7.7 | +3.6 | +9.1 | -4.1 | +9.9 | -9.1 | -10.6 | +2.2 |
Relative (%) | -2.5 | +9.1 | -5.0 | -14.1 | +6.6 | +16.7 | -7.6 | +18.2 | -16.6 | -19.5 | +4.0 | |
Step | 22 | 35 | 44 | 51 | 57 | 62 | 66 | 70 | 73 | 76 | 79 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +27.1 | +7.7 | -2.7 | -5.5 | -1.5 | +8.5 | +23.9 | -10.4 | +14.1 | -12.0 | +20.0 | +0.8 |
Relative (%) | +49.7 | +14.2 | -5.0 | -10.1 | -2.7 | +15.6 | +43.8 | -19.1 | +25.8 | -22.0 | +36.8 | +1.5 | |
Step | 82 | 84 | 86 | 88 | 90 | 92 | 94 | 95 | 97 | 98 | 100 | 101 |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.8 | +2.8 | -5.5 | -10.9 | +0.0 | +5.2 | -8.3 | +5.5 | -13.6 | -15.4 | -2.8 |
Relative (%) | -5.1 | +5.1 | -10.1 | -20.0 | +0.0 | +9.6 | -15.2 | +10.1 | -25.1 | -28.3 | -5.1 | |
Steps (reduced) |
22 (22) |
35 (35) |
44 (44) |
51 (51) |
57 (0) |
62 (5) |
66 (9) |
70 (13) |
73 (16) |
76 (19) |
79 (22) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +21.9 | +2.5 | -8.1 | -11.0 | -7.1 | +2.8 | +18.0 | -16.4 | +8.0 | -18.1 | +13.8 | -5.5 |
Relative (%) | +40.3 | +4.6 | -14.9 | -20.2 | -13.1 | +5.1 | +33.1 | -30.1 | +14.7 | -33.3 | +25.3 | -10.1 | |
Steps (reduced) |
82 (25) |
84 (27) |
86 (29) |
88 (31) |
90 (33) |
92 (35) |
94 (37) |
95 (38) |
97 (40) |
98 (41) |
100 (43) |
101 (44) |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -12.1 | -12.1 | -24.2 | +21.5 | -24.2 | -21.0 | +17.8 | -24.2 | +9.4 | +6.4 | +17.8 |
Relative (%) | -22.4 | -22.4 | -44.7 | +39.8 | -44.7 | -39.0 | +32.9 | -44.7 | +17.5 | +11.9 | +32.9 | |
Steps (reduced) |
22 (9) |
35 (9) |
44 (5) |
52 (0) |
57 (5) |
62 (10) |
67 (2) |
70 (5) |
74 (9) |
77 (12) |
80 (2) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -12.8 | +20.9 | +9.4 | +5.7 | +8.7 | +17.8 | -21.8 | -2.6 | +20.9 | -5.7 | +25.4 | +5.7 |
Relative (%) | -23.7 | +38.7 | +17.5 | +10.5 | +16.2 | +32.9 | -40.4 | -4.9 | +38.7 | -10.5 | +47.0 | +10.5 | |
Steps (reduced) |
82 (4) |
85 (7) |
87 (9) |
89 (11) |
91 (0) |
93 (2) |
94 (3) |
96 (5) |
98 (7) |
99 (8) |
101 (10) |
102 (11) |
- Step size: NNN ¢, octave size: NNN ¢
_ing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.5 | +0.0 | -9.0 | -14.9 | -4.5 | +0.4 | -13.5 | +0.0 | -19.4 | -21.4 | -9.0 |
Relative (%) | -8.3 | +0.0 | -16.5 | -27.4 | -8.3 | +0.6 | -24.8 | +0.0 | -35.7 | -39.3 | -16.5 | |
Steps (reduced) |
22 (22) |
35 (0) |
44 (9) |
51 (16) |
57 (22) |
62 (27) |
66 (31) |
70 (0) |
73 (3) |
76 (6) |
79 (9) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.5 | -4.1 | -14.9 | -17.9 | -14.2 | -4.5 | +10.6 | -23.9 | +0.4 | -25.8 | +5.9 | -13.5 |
Relative (%) | +28.5 | -7.6 | -27.4 | -33.0 | -26.2 | -8.3 | +19.5 | -43.9 | +0.6 | -47.6 | +10.8 | -24.8 | |
Steps (reduced) |
82 (12) |
84 (14) |
86 (16) |
88 (18) |
90 (20) |
92 (22) |
94 (24) |
95 (25) |
97 (27) |
98 (28) |
100 (30) |
101 (31) |
13edf
35edt