8ed6: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
Cleanup
Line 9: Line 9:


== Intervals ==
== Intervals ==
{| class="wikitable"
{| class="wikitable right-2"
|-
|-
! #
! #
Line 16: Line 16:
|-
|-
| 0
| 0
| 0.000
| 0
| exact 1/1
| 1/1
|-
|-
| 1
| 1
| 387.744
| 388
| 5/4
| 5/4
|-
|-
| 2
| 2
| 775.489
| 775
| 25/16, 11/7
| 11/7, 25/16
|-
|-
| 3
| 3
| 1163.233
| 1163
|
|
|-
|-
| 4
| 4
| 1550.978
| 1551
| 22/9
| 22/9
|-
|-
| 5
| 5
| 1938.722
| 1939
| 64/21, 49/16
| 49/16, 64/21
|-
|-
| 6
| 6
| 2326.466
| 2326
|
|
|-
|-
| 7
| 7
| 2714.211
| 2714
| 24/5
| 24/5
|-
|-
| 8
| 8
| 3101.955
| 3102
| exact 6/1
| 6/1
|}
|}

Revision as of 17:50, 15 July 2025

← 7ed6 8ed6 9ed6 →
Prime factorization 23
Step size 387.744 ¢ 
Octave 3\8ed6 (1163.23 ¢)
(semiconvergent)
Twelfth 5\8ed6 (1938.72 ¢)
(semiconvergent)
Consistency limit 6
Distinct consistency limit 4

8 equal divisions of the 6th harmonic (abbreviated 8ed6) is a nonoctave tuning system that divides the interval of 6/1 into 8 equal parts of about 388 ¢ each. Each step represents a frequency ratio of 61/8, or the 8th root of 6.

Theory

8ed6 can be thought of as a subset (where the ~5/4 generator is stacked) of the 6/1-eigenmonzo tuning of würschmidt.

Harmonics

Approximation of harmonics in 8ed6
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -37 +37 -74 -72 +0 +121 -110 +74 -109 +114 -37
Relative (%) -9.5 +9.5 -19.0 -18.6 +0.0 +31.2 -28.4 +19.0 -28.1 +29.4 -9.5
Steps
(reduced)
3
(3)
5
(5)
6
(6)
7
(7)
8
(0)
9
(1)
9
(1)
10
(2)
10
(2)
11
(3)
11
(3)

Intervals

# Cents Approximate JI ratio(s)
0 0 1/1
1 388 5/4
2 775 11/7, 25/16
3 1163
4 1551 22/9
5 1939 49/16, 64/21
6 2326
7 2714 24/5
8 3102 6/1