Lumatone mapping for 26edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) No edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{Lumatone mapping intro}} | |||
{{Lumatone EDO mapping|n=26|start=-4|xstep=4|ystep=-1}} | {{Lumatone EDO mapping|n=26|start=-4|xstep=4|ystep=-1}} | ||
However, | However, 26edo is a [[flattone]] system that does not have very accurate 5-limit approximations, so other options are probably preferable. If you want to maximise the playable range and put the best consonances close to each other, the [[orgone]] mapping is the clear winner. | ||
{{Lumatone EDO mapping|n=26|start=17|xstep=7|ystep=-2}} | {{Lumatone EDO mapping|n=26|start=17|xstep=7|ystep=-2}} | ||
Revision as of 18:15, 14 March 2025
There are many conceivable ways to map 26edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

22
0
25
3
7
11
15
24
2
6
10
14
18
22
0
1
5
9
13
17
21
25
3
7
11
15
0
4
8
12
16
20
24
2
6
10
14
18
22
0
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
22
0
4
8
12
16
20
24
2
6
10
14
18
22
11
15
19
23
1
5
9
13
17
21
25
22
0
4
8
12
16
20
24
11
15
19
23
1
22
0
However, 26edo is a flattone system that does not have very accurate 5-limit approximations, so other options are probably preferable. If you want to maximise the playable range and put the best consonances close to each other, the orgone mapping is the clear winner.

17
24
22
3
10
17
24
20
1
8
15
22
3
10
17
25
6
13
20
1
8
15
22
3
10
17
23
4
11
18
25
6
13
20
1
8
15
22
3
10
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
10
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
20
1
8
15
22
3
10
17
24
5
12
19
0
7
20
1
8
15
22
3
10
17
24
5
12
13
20
1
8
15
22
3
10
13
20
1
8
15
6
13
The Lemba and Hendec mappings also work particularly well in 26edo.

25
4
2
7
12
17
22
0
5
10
15
20
25
4
9
3
8
13
18
23
2
7
12
17
22
1
1
6
11
16
21
0
5
10
15
20
25
4
9
14
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
11
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
24
11
16
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
11
16
24
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
16
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
24
13
18
23
2
7
12
17
22
5
10
15
20
25
18
23

20
24
25
3
7
11
15
0
4
8
12
16
20
24
2
5
9
13
17
21
25
3
7
11
15
19
6
10
14
18
22
0
4
8
12
16
20
24
2
6
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
22
0
4
8
12
16
20
24
2
6
10
14
18
22
13
17
21
25
3
7
11
15
19
23
1
0
4
8
12
16
20
24
2
17
21
25
3
7
4
8