Lumatone mapping for 20edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
Line 1: Line 1:
There are several conceivable ways to map [[20edo]] onto the [[Lumatone]] keyboard. However, as it has multiple small rings of 5ths, the [[Standard Lumatone mapping for Pythagorean]] is not one of them. You can use the b val, which creates the [[2L 5s]] Balzano mapping.
There are several conceivable ways to map [[20edo]] onto the [[Lumatone]] keyboard. However, as it has multiple small rings of 5ths, the [[Standard Lumatone mapping for Pythagorean]] is not one of them. You can use the b val, which creates the [[2L 5s]] Balzano mapping.
{{Lumatone EDO mapping|n=20|start=4|xstep=2|ystep=3}}
{{Lumatone EDO mapping|n=20|start=4|xstep=2|ystep=3}}


This is not particularly optimal for making the best tuned intervals easily playable, however. Better options are the [[Blackwood]] mapping.
This is not particularly optimal for making the best tuned intervals easily playable, however. Better options are the [[Blackwood]] mapping.
{{Lumatone EDO mapping|n=20|start=12|xstep=4|ystep=-1}}
{{Lumatone EDO mapping|n=20|start=12|xstep=4|ystep=-1}}


Or the [[Tetracot]] mapping.
Or the [[Tetracot]] mapping.

Revision as of 16:11, 14 March 2025

There are several conceivable ways to map 20edo onto the Lumatone keyboard. However, as it has multiple small rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. You can use the b val, which creates the 2L 5s Balzano mapping.

4
6
9
11
13
15
17
12
14
16
18
0
2
4
6
17
19
1
3
5
7
9
11
13
15
17
0
2
4
6
8
10
12
14
16
18
0
2
4
6
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
13
15
17
19
1
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
19
1
3
5
7
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
12
14
16
18
0
2
4
6
8
10
12
14
16
18
3
5
7
9
11
13
15
17
19
1
3
12
14
16
18
0
2
4
6
3
5
7
9
11
12
14


This is not particularly optimal for making the best tuned intervals easily playable, however. Better options are the Blackwood mapping.

12
16
15
19
3
7
11
14
18
2
6
10
14
18
2
17
1
5
9
13
17
1
5
9
13
17
16
0
4
8
12
16
0
4
8
12
16
0
4
8
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
10
14
18
2
6
10
14
18
2
6
10
14
18
2
5
9
13
17
1
5
9
13
17
1
5
16
0
4
8
12
16
0
4
11
15
19
3
7
2
6


Or the Tetracot mapping.

17
0
19
2
5
8
11
18
1
4
7
10
13
16
19
0
3
6
9
12
15
18
1
4
7
10
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
13
16
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
12
12
15
18
1
4
7
10
13
16
19
2
5
8
11
3
6
9
12
15
18
1
4
7
10
13
11
14
17
0
3
6
9
12
2
5
8
11
14
10
13


ViewTalkEditLumatone mappings 
17edo18edo19edoLumatone mapping for 20edo21edo22edo23edo