Lumatone mapping for 20edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) m Categories are added automatically now |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 8: | Line 8: | ||
{{Lumatone EDO mapping|n=20|start=17|xstep=3|ystep=-1}} | {{Lumatone EDO mapping|n=20|start=17|xstep=3|ystep=-1}} | ||
{{Lumatone | {{Navbox Lumatone}} |
Revision as of 16:53, 11 February 2025
There are several conceivable ways to map 20edo onto the Lumatone keyboard. However, as it has multiple small rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. You can use the b val, which creates the 2L 5s Balzano mapping.

4
6
9
11
13
15
17
12
14
16
18
0
2
4
6
17
19
1
3
5
7
9
11
13
15
17
0
2
4
6
8
10
12
14
16
18
0
2
4
6
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
13
15
17
19
1
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
19
1
3
5
7
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
12
14
16
18
0
2
4
6
8
10
12
14
16
18
3
5
7
9
11
13
15
17
19
1
3
12
14
16
18
0
2
4
6
3
5
7
9
11
12
14
This is not particularly optimal for making the best tuned intervals easily playable, however. Better options are the Blackwood mapping.

12
16
15
19
3
7
11
14
18
2
6
10
14
18
2
17
1
5
9
13
17
1
5
9
13
17
16
0
4
8
12
16
0
4
8
12
16
0
4
8
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
10
14
18
2
6
10
14
18
2
6
10
14
18
2
5
9
13
17
1
5
9
13
17
1
5
16
0
4
8
12
16
0
4
11
15
19
3
7
2
6
Or the Tetracot mapping.

17
0
19
2
5
8
11
18
1
4
7
10
13
16
19
0
3
6
9
12
15
18
1
4
7
10
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
13
16
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
12
12
15
18
1
4
7
10
13
16
19
2
5
8
11
3
6
9
12
15
18
1
4
7
10
13
11
14
17
0
3
6
9
12
2
5
8
11
14
10
13