Lumatone mapping for 26edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
m Template adds categories automatically
ArrowHead294 (talk | contribs)
mNo edit summary
Line 10: Line 10:
{{Lumatone EDO mapping|n=26|start=20|xstep=4|ystep=1}}
{{Lumatone EDO mapping|n=26|start=20|xstep=4|ystep=1}}


{{Lumatone mapping navigation}}
{{Navbox Lumatone}}

Revision as of 16:47, 11 February 2025

There are many conceivable ways to map 26edo onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

22
0
25
3
7
11
15
24
2
6
10
14
18
22
0
1
5
9
13
17
21
25
3
7
11
15
0
4
8
12
16
20
24
2
6
10
14
18
22
0
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
22
0
4
8
12
16
20
24
2
6
10
14
18
22
11
15
19
23
1
5
9
13
17
21
25
22
0
4
8
12
16
20
24
11
15
19
23
1
22
0

However, as 26edo's 5-limit performance is not it's best feature, other options are probably preferable. If you want to maximise the playable range and put the best consonances close to each other, the orgone mapping is the clear winner.

17
24
22
3
10
17
24
20
1
8
15
22
3
10
17
25
6
13
20
1
8
15
22
3
10
17
23
4
11
18
25
6
13
20
1
8
15
22
3
10
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
10
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
20
1
8
15
22
3
10
17
24
5
12
19
0
7
20
1
8
15
22
3
10
17
24
5
12
13
20
1
8
15
22
3
10
13
20
1
8
15
6
13

The Lemba and Hendec mappings also work particularly well in 26edo.

25
4
2
7
12
17
22
0
5
10
15
20
25
4
9
3
8
13
18
23
2
7
12
17
22
1
1
6
11
16
21
0
5
10
15
20
25
4
9
14
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
11
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
24
11
16
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
11
16
24
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
16
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
24
13
18
23
2
7
12
17
22
5
10
15
20
25
18
23
20
24
25
3
7
11
15
0
4
8
12
16
20
24
2
5
9
13
17
21
25
3
7
11
15
19
6
10
14
18
22
0
4
8
12
16
20
24
2
6
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
22
0
4
8
12
16
20
24
2
6
10
14
18
22
13
17
21
25
3
7
11
15
19
23
1
0
4
8
12
16
20
24
2
17
21
25
3
7
4
8


ViewTalkEditLumatone mappings 
23edo24edo25edoLumatone mapping for 26edo27edo28edo29edo