Edonoi: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>guest
**Imported revision 256694838 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
EDONOI is short for "equal divisions of non-octave intervals".
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2011-09-21 14:57:44 UTC</tt>.<br>
: The original revision id was <tt>256694838</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">EDONOI is short for "equal divisions of non-octave intervals".


Examples include the equal-tempered [[BP|Bohlen-Pierce scale]] (a.k.a. the 13th root of 3), [[Carlos Alpha]], [[Carlos Beta]], [[Carlos Gamma]], the [[19ED3|19th root of 3]], the [[6edf|6th root of 3:2]] , [[88cET]] and the [[square root of 13 over 10|square root of 13:10]] .
Examples include the equal-tempered [[BP|Bohlen-Pierce scale]] (a.k.a. the 13th root of 3), [[Carlos_Alpha|Carlos Alpha]], [[Carlos_Beta|Carlos Beta]], [[Carlos_Gamma|Carlos Gamma]], the [[19ED3|19th root of 3]], the [[6edf|6th root of 3:2]] , [[88cET|88cET]] and the [[square_root_of_13_over_10|square root of 13:10]] .


Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on [[edo]]s.
Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on [[EDO|edo]]s.


Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional [[redundancy]], that of octave equivalence, and thus require special attention.
Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional [[redundancy|redundancy]], that of octave equivalence, and thus require special attention.


See: [[nonoctave]]; [[http://www.nonoctave.com/tuning/quintave.html|X. J. Scott's Equal Divisions of Rational Intervals]]</pre></div>
See: [[nonoctave|nonoctave]]; [http://www.nonoctave.com/tuning/quintave.html X. J. Scott's Equal Divisions of Rational Intervals]     [[Category:edonoi]]
<h4>Original HTML content:</h4>
[[Category:term]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;edonoi&lt;/title&gt;&lt;/head&gt;&lt;body&gt;EDONOI is short for &amp;quot;equal divisions of non-octave intervals&amp;quot;.&lt;br /&gt;
[[Category:theory]]
&lt;br /&gt;
Examples include the equal-tempered &lt;a class="wiki_link" href="/BP"&gt;Bohlen-Pierce scale&lt;/a&gt; (a.k.a. the 13th root of 3), &lt;a class="wiki_link" href="/Carlos%20Alpha"&gt;Carlos Alpha&lt;/a&gt;, &lt;a class="wiki_link" href="/Carlos%20Beta"&gt;Carlos Beta&lt;/a&gt;, &lt;a class="wiki_link" href="/Carlos%20Gamma"&gt;Carlos Gamma&lt;/a&gt;, the &lt;a class="wiki_link" href="/19ED3"&gt;19th root of 3&lt;/a&gt;, the &lt;a class="wiki_link" href="/6edf"&gt;6th root of 3:2&lt;/a&gt; , &lt;a class="wiki_link" href="/88cET"&gt;88cET&lt;/a&gt; and the &lt;a class="wiki_link" href="/square%20root%20of%2013%20over%2010"&gt;square root of 13:10&lt;/a&gt; .&lt;br /&gt;
&lt;br /&gt;
Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on &lt;a class="wiki_link" href="/edo"&gt;edo&lt;/a&gt;s.&lt;br /&gt;
&lt;br /&gt;
Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional &lt;a class="wiki_link" href="/redundancy"&gt;redundancy&lt;/a&gt;, that of octave equivalence, and thus require special attention.&lt;br /&gt;
&lt;br /&gt;
See: &lt;a class="wiki_link" href="/nonoctave"&gt;nonoctave&lt;/a&gt;; &lt;a class="wiki_link_ext" href="http://www.nonoctave.com/tuning/quintave.html" rel="nofollow"&gt;X. J. Scott's Equal Divisions of Rational Intervals&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>

Revision as of 00:00, 17 July 2018

EDONOI is short for "equal divisions of non-octave intervals".

Examples include the equal-tempered Bohlen-Pierce scale (a.k.a. the 13th root of 3), Carlos Alpha, Carlos Beta, Carlos Gamma, the 19th root of 3, the 6th root of 3:2 , 88cET and the square root of 13:10 .

Some EDONOI contain an interval close to a 2:1 that might function like a stretched or squashed octave. They can thus be considered variations on edos.

Other EDONOI contain no approximation of an octave or a compound octave (at least, not for a while), and continue generating new tones as they continue upward or downward. Such scales lack a very familiar compositional redundancy, that of octave equivalence, and thus require special attention.

See: nonoctave; X. J. Scott's Equal Divisions of Rational Intervals