2777edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Francium (talk | contribs)
+music
Line 3: Line 3:


== Theory ==
== Theory ==
2777edo is [[consistent]] to the [[7-odd-limit]] and its [[harmonic]] [[3/1|3]] is about halfway its steps. Using the 2.9.5.7.11.13.17.23.29.31 [[subgroup]], it [[tempering out|tempers out]] [[12376/12375]], [[14400/14399]], [[25025/25024]], [[123201/123200]], 20736/20735, [[194481/194480]], 16445/16443, 27625/27621 and 23716/23715. Using the no-3-or-19 23-limit subgroup, it tempers out [[25025/25024]].
2777edo is [[consistent]] to the [[7-odd-limit]] and its [[harmonic]] [[3/1|3]] is about halfway its steps. Using the 2.9.5.7.11.13.17.23.29.31 [[subgroup]], it [[tempering out|tempers out]] [[12376/12375]], [[14400/14399]], [[25025/25024]], [[123201/123200]], 20736/20735, [[194481/194480]], 16445/16443, 27625/27621 and 23716/23715. Using the 2.5.7.11.13.17.23 subgroup, it tempers out [[25025/25024]].


=== Odd harmonics ===
=== Odd harmonics ===
Line 64: Line 64:
| 2.59
| 2.59
|}
|}
== Music ==
; [[Francium]]
* "Joekalille" from ''Naughty Girl Era'' (2024) − [https://open.spotify.com/track/3JkOxSgwBe9dUtxNwI86qa Spotify] | [https://francium223.bandcamp.com/track/joekalille Bandcamp] | [https://www.youtube.com/watch?v=bIwZCmfz7HM YouTube] – joshuavoic in 2777edo

Revision as of 12:49, 1 December 2024

← 2776edo 2777edo 2778edo →
Prime factorization 2777 (prime)
Step size 0.432121 ¢ 
Fifth 1624\2777 (701.764 ¢)
Semitones (A1:m2) 260:211 (112.4 ¢ : 91.18 ¢)
Dual sharp fifth 1625\2777 (702.197 ¢)
Dual flat fifth 1624\2777 (701.764 ¢)
Dual major 2nd 472\2777 (203.961 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

2777edo is consistent to the 7-odd-limit and its harmonic 3 is about halfway its steps. Using the 2.9.5.7.11.13.17.23.29.31 subgroup, it tempers out 12376/12375, 14400/14399, 25025/25024, 123201/123200, 20736/20735, 194481/194480, 16445/16443, 27625/27621 and 23716/23715. Using the 2.5.7.11.13.17.23 subgroup, it tempers out 25025/25024.

Odd harmonics

Approximation of odd harmonics in 2777edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.191 +0.002 -0.011 +0.051 +0.068 -0.052 -0.188 +0.050 -0.214 -0.201 +0.030
Relative (%) -44.1 +0.6 -2.5 +11.8 +15.8 -12.1 -43.5 +11.6 -49.5 -46.5 +6.8
Steps
(reduced)
4401
(1624)
6448
(894)
7796
(2242)
8803
(472)
9607
(1276)
10276
(1945)
10849
(2518)
11351
(243)
11796
(688)
12197
(1089)
12562
(1454)

Subsets and supersets

2777edo is the 404th prime EDO. 5554edo, which doubles it, gives a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [8803 -2777 [2777 8803]] -0.0081 0.0081 1.87
2.9.5 [146 -38 -11, [-89 -21 67 [2777 8803 6448]] -0.0057 0.0074 1.71
2.9.5.7 [2 -10 14 -1, [-1 -9 -3 13, [-48 0 11 8 [2777 8803 6448 7796]] -0.0033 0.0076 1.76
2.9.5.7.11 151263/151250, 184549376/184528125, 35156250/35153041, 3487704605/3486784401 [2777 8803 6448 7796 9607]] -0.0066 0.0095 2.20
2.9.5.7.11.13 123201/123200, 6656/6655, 151263/151250, 8859375/8859136, 43061200/43046721 [2777 8803 6448 7796 9607 10276]] -0.0032 0.0116 2.68
2.9.5.7.11.13.17 12376/12375, 14400/14399, 123201/123200, 194481/194480, 4685824/4685625, 81331250/81310473 [2777 8803 6448 7796 9607 10276 11351]] -0.0045 0.0112 2.59

Music

Francium