Lumatone mapping for 26edo: Difference between revisions
Jump to navigation
Jump to search
Add alternative mappings, category. |
mNo edit summary |
||
Line 9: | Line 9: | ||
{{Lumatone EDO mapping|n=26|start=25|xstep=5|ystep=-2}} | {{Lumatone EDO mapping|n=26|start=25|xstep=5|ystep=-2}} | ||
{{Lumatone EDO mapping|n=26|start=20|xstep=4|ystep=1}} | {{Lumatone EDO mapping|n=26|start=20|xstep=4|ystep=1}} | ||
{{Lumatone mapping navigation}} | |||
[[Category:Lumatone mappings]] [[Category:26edo]] | [[Category:Lumatone mappings]] [[Category:26edo]] |
Revision as of 01:26, 17 November 2024
There are many conceivable ways to map 26edo onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

22
0
25
3
7
11
15
24
2
6
10
14
18
22
0
1
5
9
13
17
21
25
3
7
11
15
0
4
8
12
16
20
24
2
6
10
14
18
22
0
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
22
0
4
8
12
16
20
24
2
6
10
14
18
22
11
15
19
23
1
5
9
13
17
21
25
22
0
4
8
12
16
20
24
11
15
19
23
1
22
0
However, as 26edo's 5-limit performance is not it's best feature, other options are probably preferable. If you want to maximise the playable range and put the best consonances close to each other, the orgone mapping is the clear winner.

17
24
22
3
10
17
24
20
1
8
15
22
3
10
17
25
6
13
20
1
8
15
22
3
10
17
23
4
11
18
25
6
13
20
1
8
15
22
3
10
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
10
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
20
1
8
15
22
3
10
17
24
5
12
19
0
7
20
1
8
15
22
3
10
17
24
5
12
13
20
1
8
15
22
3
10
13
20
1
8
15
6
13
The Lemba and Hendec mappings also work particularly well in 26edo.

25
4
2
7
12
17
22
0
5
10
15
20
25
4
9
3
8
13
18
23
2
7
12
17
22
1
1
6
11
16
21
0
5
10
15
20
25
4
9
14
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
11
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
24
11
16
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
11
16
24
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
16
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
24
13
18
23
2
7
12
17
22
5
10
15
20
25
18
23

20
24
25
3
7
11
15
0
4
8
12
16
20
24
2
5
9
13
17
21
25
3
7
11
15
19
6
10
14
18
22
0
4
8
12
16
20
24
2
6
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
22
0
4
8
12
16
20
24
2
6
10
14
18
22
13
17
21
25
3
7
11
15
19
23
1
0
4
8
12
16
20
24
2
17
21
25
3
7
4
8