User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions
Line 10: | Line 10: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Cents | |+Cents | ||
! colspan=" | ! colspan="3" |Notation | ||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
Line 20: | Line 20: | ||
|- | |- | ||
!Fourth | !Fourth | ||
!Seventh | ! colspan="2" |Seventh | ||
!~11ed4/3 | !~11ed4/3 | ||
!~8ed4/3 | !~8ed4/3 | ||
Line 28: | Line 28: | ||
!~7ed4\3 | !~7ed4\3 | ||
!~9ed4/3 | !~9ed4/3 | ||
|- | |||
! | |||
!Mixolydian | |||
!Dorian | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
! | |||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|Sol# | |Sol# | ||
|Re# | |||
|1\11, 46.154 | |1\11, 46.154 | ||
|1\8, 63.158 | |1\8, 63.158 | ||
Line 37: | Line 49: | ||
|3\12, 124.138 | |3\12, 124.138 | ||
|2\7, 141.176 | |2\7, 141.176 | ||
|3\9, 163. | |3\9, 163.636 | ||
|- | |- | ||
| Reb, Lab | | Reb, Lab | ||
|Lab | |Lab | ||
|Mib | |||
|3\11, 138.462 | |3\11, 138.462 | ||
|2\8, 126.316 | |2\8, 126.316 | ||
Line 46: | Line 59: | ||
|2\12, 82.759 | |2\12, 82.759 | ||
|1\7, 70.588 | |1\7, 70.588 | ||
|1\9, 54. | |1\9, 54.545 | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''La''' | |'''La''' | ||
|'''Mi''' | |||
|'''4\11,''' '''184.615''' | |'''4\11,''' '''184.615''' | ||
|'''3\8,''' '''189.474''' | |'''3\8,''' '''189.474''' | ||
Line 56: | Line 70: | ||
|'''5\12,''' '''206.897''' | |'''5\12,''' '''206.897''' | ||
|'''3\7,''' '''211.765''' | |'''3\7,''' '''211.765''' | ||
|'''4\9,''' '''218. | |'''4\9,''' '''218.182''' | ||
|- | |- | ||
|Re#, La# | |Re#, La# | ||
|La# | |La# | ||
|Mi# | |||
|5\11, 230.769 | |5\11, 230.769 | ||
|4\8, 252.632 | |4\8, 252.632 | ||
Line 66: | Line 81: | ||
| 8\12, 331.034 | | 8\12, 331.034 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
|7\9, 381. | |7\9, 381.818 | ||
|- | |- | ||
|'''Mib, Sib''' | |'''Mib, Sib''' | ||
|'''Sib''' | |'''Sib''' | ||
|'''Fa''' | |||
|'''7\11,''' '''323.077''' | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |'''5\8,''' '''315.789''' | ||
Line 75: | Line 91: | ||
|'''7\12,''' '''289.655''' | |'''7\12,''' '''289.655''' | ||
|'''4\7,''' '''282.353''' | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272. | |'''5\9,''' '''272.727''' | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
| Si | | Si | ||
|Fa# | |||
|8\11, 369.231 | |8\11, 369.231 | ||
|6\8, 378.947 | |6\8, 378.947 | ||
Line 85: | Line 102: | ||
|10\12, 413.793 | |10\12, 413.793 | ||
|6\7, 423.529 | |6\7, 423.529 | ||
|8\9, 436. | |8\9, 436.364 | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
|Si# | |Si# | ||
|Fax | |||
|9\11, 415.385 | |9\11, 415.385 | ||
| rowspan="2" |7\8, 442.105 | | rowspan="2" |7\8, 442.105 | ||
Line 99: | Line 117: | ||
|Dob, Solb | |Dob, Solb | ||
| Dob | | Dob | ||
|Solb | |||
|10\11, 461.538 | |10\11, 461.538 | ||
|11\13, 425.806 | |11\13, 425.806 | ||
Line 104: | Line 123: | ||
|9\12, 372.414 | |9\12, 372.414 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
|6\9, 327. | |6\9, 327.273 | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!Do | !Do | ||
!Sol | |||
!'''11\11,''' '''507.692''' | !'''11\11,''' '''507.692''' | ||
!'''8\8,''' '''505.263''' | !'''8\8,''' '''505.263''' | ||
Line 114: | Line 134: | ||
!'''12\12,''' '''496.552''' | !'''12\12,''' '''496.552''' | ||
!'''7\7,''' '''494.118''' | !'''7\7,''' '''494.118''' | ||
!'''9\9,''' '''490. | !'''9\9,''' '''490.909''' | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|Do# | |Do# | ||
|Sol# | |||
|12\11, 553.846 | |12\11, 553.846 | ||
|9\8, 568.421 | |9\8, 568.421 | ||
Line 124: | Line 145: | ||
|15\12, 620.690 | |15\12, 620.690 | ||
|9\7, 635.294 | |9\7, 635.294 | ||
|12\9, 654. | |12\9, 654.545 | ||
|- | |- | ||
|Reb, Lab | |Reb, Lab | ||
|Reb | |Reb | ||
|Lab | |||
|14\11, 646.154 | |14\11, 646.154 | ||
|10\8, 631.579 | |10\8, 631.579 | ||
Line 133: | Line 155: | ||
|14\12, 579.310 | |14\12, 579.310 | ||
|8\7, 564.706 | |8\7, 564.706 | ||
|10\9, 545. | |10\9, 545.455 | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''Re''' | |'''Re''' | ||
|'''La''' | |||
|'''15\11,''' '''692.308''' | |'''15\11,''' '''692.308''' | ||
|'''11\8''' '''694.737''' | |'''11\8''' '''694.737''' | ||
Line 143: | Line 166: | ||
|'''17\12,''' '''703.448''' | |'''17\12,''' '''703.448''' | ||
|'''10\7,''' '''705.882''' | |'''10\7,''' '''705.882''' | ||
|'''13\9,''' '''709. | |'''13\9,''' '''709.091''' | ||
|- | |- | ||
|Re#, La# | |Re#, La# | ||
|Re# | |Re# | ||
|La# | |||
|16\11, 738.462 | |16\11, 738.462 | ||
|12\8, 757.895 | |12\8, 757.895 | ||
Line 153: | Line 177: | ||
|20\12, 827.586 | |20\12, 827.586 | ||
|12\7, 847.059 | |12\7, 847.059 | ||
|16\9, 872. | |16\9, 872.727 | ||
|- | |- | ||
|'''Mib, Sib''' | |'''Mib, Sib''' | ||
|'''Mib''' | |'''Mib''' | ||
|'''Sib''' | |||
|'''18\11,''' '''830.769''' | |'''18\11,''' '''830.769''' | ||
|'''13\8,''' '''821.053''' | |'''13\8,''' '''821.053''' | ||
Line 162: | Line 187: | ||
|'''19\12,''' '''786.207''' | |'''19\12,''' '''786.207''' | ||
|'''11\7,''' '''776.471''' | |'''11\7,''' '''776.471''' | ||
|'''14\9,''' '''763. | |'''14\9,''' '''763.636''' | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|Mi | |Mi | ||
|Si | |||
|19\11, 876.923 | |19\11, 876.923 | ||
|14\8, 884.211 | |14\8, 884.211 | ||
Line 172: | Line 198: | ||
|22\12, 910.345 | |22\12, 910.345 | ||
|13\7, 917.647 | |13\7, 917.647 | ||
|17\9, 927. | |17\9, 927.727 | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
| Mi# | | Mi# | ||
|Si# | |||
|20\11, 923.077 | |20\11, 923.077 | ||
| rowspan="2" |15\8, 947.378 | | rowspan="2" |15\8, 947.378 | ||
Line 182: | Line 209: | ||
|25\12, 1034.483 | |25\12, 1034.483 | ||
|15\7, 1058.824 | |15\7, 1058.824 | ||
|20\9, 1090. | |20\9, 1090.909 | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Solb | |Solb | ||
|Reb | |||
|21\11, 969.231 | |21\11, 969.231 | ||
|24\13, 929.033 | |24\13, 929.033 | ||
Line 191: | Line 219: | ||
|21\12, 868.966 | |21\12, 868.966 | ||
|11\7, 776.471 | |11\7, 776.471 | ||
|15\9, 818. | |15\9, 818.182 | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!Sol | !Sol | ||
!Re | |||
!22\11, 1015.385 | !22\11, 1015.385 | ||
!16\8, 1010.526 | !16\8, 1010.526 | ||
Line 201: | Line 230: | ||
!24\12, 993.103 | !24\12, 993.103 | ||
!14\7, 988.235 | !14\7, 988.235 | ||
!18\9, 981. | !18\9, 981.818 | ||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 231: | Line 260: | ||
|3\12, 124.138 | |3\12, 124.138 | ||
|2\7, 141.176 | |2\7, 141.176 | ||
|3\9, 163. | |3\9, 163.636 | ||
|- | |- | ||
|Jf, Af | |Jf, Af | ||
Line 240: | Line 269: | ||
|2\12, 82.759 | |2\12, 82.759 | ||
|1\7, 70.588 | |1\7, 70.588 | ||
|1\9, 54. | |1\9, 54.545 | ||
|- | |- | ||
|'''J, A''' | |'''J, A''' | ||
Line 250: | Line 279: | ||
|'''5\12,''' '''206.897''' | |'''5\12,''' '''206.897''' | ||
|'''3\7,''' '''211.765''' | |'''3\7,''' '''211.765''' | ||
|'''4\9,''' '''218. | |'''4\9,''' '''218.182''' | ||
|- | |- | ||
|J#, A# | |J#, A# | ||
Line 260: | Line 289: | ||
|8\12, 331.034 | |8\12, 331.034 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
|7\9, 381. | |7\9, 381.818 | ||
|- | |- | ||
|'''Af, Bf''' | |'''Af, Bf''' | ||
Line 269: | Line 298: | ||
|'''7\12,''' '''289.655''' | |'''7\12,''' '''289.655''' | ||
|'''4\7,''' '''282.353''' | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272. | |'''5\9,''' '''272.727''' | ||
|- | |- | ||
|A, B | |A, B | ||
Line 279: | Line 308: | ||
|10\12, 413.793 | |10\12, 413.793 | ||
|6\7, 423.529 | |6\7, 423.529 | ||
|8\9, 436. | |8\9, 436.364 | ||
|- | |- | ||
|A#, B# | |A#, B# | ||
Line 298: | Line 327: | ||
|9\12, 372.414 | |9\12, 372.414 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
|6\9, 327. | |6\9, 327.273 | ||
|- | |- | ||
!B, C | !B, C | ||
Line 308: | Line 337: | ||
!'''12\12,''' '''496.552''' | !'''12\12,''' '''496.552''' | ||
!'''7\7,''' '''494.118''' | !'''7\7,''' '''494.118''' | ||
!'''9\9,''' '''490. | !'''9\9,''' '''490.909''' | ||
|- | |- | ||
|B#, C# | |B#, C# | ||
Line 318: | Line 347: | ||
|15\12, 620.690 | |15\12, 620.690 | ||
|9\7, 635.294 | |9\7, 635.294 | ||
|12\9, 654. | |12\9, 654.545 | ||
|- | |- | ||
|Cf, Qf | |Cf, Qf | ||
Line 327: | Line 356: | ||
|14\12, 579.310 | |14\12, 579.310 | ||
|8\7, 564.706 | |8\7, 564.706 | ||
|10\9, 545. | |10\9, 545.455 | ||
|- | |- | ||
|'''C, Q''' | |'''C, Q''' | ||
Line 337: | Line 366: | ||
|'''17\12,''' '''703.448''' | |'''17\12,''' '''703.448''' | ||
|'''10\7,''' '''705.882''' | |'''10\7,''' '''705.882''' | ||
|'''13\9,''' '''709. | |'''13\9,''' '''709.091''' | ||
|- | |- | ||
|C#, Q# | |C#, Q# | ||
Line 347: | Line 376: | ||
|20\12, 827.586 | |20\12, 827.586 | ||
|12\7, 847.059 | |12\7, 847.059 | ||
|16\9, 872. | |16\9, 872.727 | ||
|- | |- | ||
|'''Qf, Df''' | |'''Qf, Df''' | ||
Line 356: | Line 385: | ||
|'''19\12,''' '''786.207''' | |'''19\12,''' '''786.207''' | ||
|'''11\7,''' '''776.471''' | |'''11\7,''' '''776.471''' | ||
|'''14\9,''' '''763. | |'''14\9,''' '''763.636''' | ||
|- | |- | ||
|Q, D | |Q, D | ||
Line 366: | Line 395: | ||
|22\12, 910.345 | |22\12, 910.345 | ||
|13\7, 917.647 | |13\7, 917.647 | ||
|17\9, 927. | |17\9, 927.727 | ||
|- | |- | ||
|Q#, D# | |Q#, D# | ||
Line 376: | Line 405: | ||
|25\12, 1034.483 | |25\12, 1034.483 | ||
|15\7, 1058.824 | |15\7, 1058.824 | ||
|20\9, 1090. | |20\9, 1090.909 | ||
|- | |- | ||
|Df, Sf | |Df, Sf | ||
Line 385: | Line 414: | ||
|21\12, 868.966 | |21\12, 868.966 | ||
|11\7, 776.471 | |11\7, 776.471 | ||
|15\9, 818. | |15\9, 818.182 | ||
|- | |- | ||
!D, S | !D, S | ||
Line 395: | Line 424: | ||
!24\12, 993.103 | !24\12, 993.103 | ||
! 14\7, 988.235 | ! 14\7, 988.235 | ||
!18\9, 981. | !18\9, 981.818 | ||
|- | |- | ||
|D#, S# | |D#, S# | ||
Line 405: | Line 434: | ||
|27\12, 1117.241 | |27\12, 1117.241 | ||
|16\7, 1129.412 | |16\7, 1129.412 | ||
|21\9, 1145. | |21\9, 1145.455 | ||
|- | |- | ||
|Ef | |Ef | ||
Line 414: | Line 443: | ||
|26\12, 1075.862 | |26\12, 1075.862 | ||
|15\7, 1058.824 | |15\7, 1058.824 | ||
|19\9, 1036. | |19\9, 1036.364 | ||
|- | |- | ||
|'''E''' | |'''E''' | ||
Line 434: | Line 463: | ||
|32\12, 1324.138 | |32\12, 1324.138 | ||
|19\7, 1341.176 | |19\7, 1341.176 | ||
|25\9, 1363. | |25\9, 1363.636 | ||
|- | |- | ||
|'''Ff''' | |'''Ff''' | ||
Line 443: | Line 472: | ||
|'''31\12,''' '''1282.759''' | |'''31\12,''' '''1282.759''' | ||
|'''18\7,''' '''1270.588''' | |'''18\7,''' '''1270.588''' | ||
|'''23\9,''' '''1254. | |'''23\9,''' '''1254.545''' | ||
|- | |- | ||
|F | |F | ||
Line 453: | Line 482: | ||
|34\12, 1406.897 | |34\12, 1406.897 | ||
|20\7, 1411.765 | |20\7, 1411.765 | ||
|26\9, 1418. | |26\9, 1418.182 | ||
|- | |- | ||
|F# | |F# | ||
Line 463: | Line 492: | ||
|37\12, 1531.034 | |37\12, 1531.034 | ||
|22\7, 1552.941 | |22\7, 1552.941 | ||
|29\9, 1581. | |29\9, 1581.818 | ||
|- | |- | ||
|Gf | |Gf | ||
Line 472: | Line 501: | ||
|33\12, 1365.517 | |33\12, 1365.517 | ||
|19\7, 1341.176 | |19\7, 1341.176 | ||
|24\9, 1309. | |24\9, 1309.091 | ||
|- | |- | ||
!G | !G | ||
Line 482: | Line 511: | ||
!36\12, 1489.655 | !36\12, 1489.655 | ||
!21\7, 1482.353 | !21\7, 1482.353 | ||
!27\9, 1472. | !27\9, 1472.727 | ||
|- | |- | ||
|G# | |G# | ||
Line 492: | Line 521: | ||
|39\12, 1613.793 | |39\12, 1613.793 | ||
|23\7, 1623.529 | |23\7, 1623.529 | ||
|30\9, 1636. | |30\9, 1636.364 | ||
|- | |- | ||
|Jf, Af | |Jf, Af | ||
Line 511: | Line 540: | ||
|'''41\12,''' '''1696.552''' | |'''41\12,''' '''1696.552''' | ||
|'''24\7,''' '''1694.118''' | |'''24\7,''' '''1694.118''' | ||
|'''31\9,''' '''1690. | |'''31\9,''' '''1690.909''' | ||
|- | |- | ||
|J#, A# | |J#, A# | ||
Line 521: | Line 550: | ||
|44\12, 1820.690 | |44\12, 1820.690 | ||
|26\7, 1835.294 | |26\7, 1835.294 | ||
|34\9, 1854. | |34\9, 1854.545 | ||
|- | |- | ||
|'''Af, Bf''' | |'''Af, Bf''' | ||
Line 530: | Line 559: | ||
|'''43\12,''' '''1779.310''' | |'''43\12,''' '''1779.310''' | ||
|'''25\7,''' '''1764.706''' | |'''25\7,''' '''1764.706''' | ||
|'''32\9,''' '''1745. | |'''32\9,''' '''1745.455''' | ||
|- | |- | ||
|A, B | |A, B | ||
Line 540: | Line 569: | ||
|46\12, 1903.448 | |46\12, 1903.448 | ||
|27\7, 1905.882 | |27\7, 1905.882 | ||
|35\9, 1909. | |35\9, 1909.090 | ||
|- | |- | ||
|A#, B# | |A#, B# | ||
Line 550: | Line 579: | ||
|49\12, 2027.586 | |49\12, 2027.586 | ||
|29\7, 2047.059 | |29\7, 2047.059 | ||
|38\9, 2072. | |38\9, 2072.727 | ||
|- | |- | ||
|Bb, Cf | |Bb, Cf | ||
Line 569: | Line 598: | ||
!48\12, 1986.207 | !48\12, 1986.207 | ||
!28\7, 1976.471 | !28\7, 1976.471 | ||
!36\9, 1963. | !36\9, 1963.636 | ||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 599: | Line 628: | ||
|3\12, 124.138 | |3\12, 124.138 | ||
|2\7, 141.176 | |2\7, 141.176 | ||
|3\9, 163. | |3\9, 163.636 | ||
|- | |- | ||
|2f | |2f | ||
Line 608: | Line 637: | ||
|2\12, 82.759 | |2\12, 82.759 | ||
|1\7, 70.588 | |1\7, 70.588 | ||
|1\9, 54. | |1\9, 54.545 | ||
|- | |- | ||
|'''2''' | |'''2''' | ||
Line 618: | Line 647: | ||
|'''5\12,''' '''206.897''' | |'''5\12,''' '''206.897''' | ||
|'''3\7,''' '''211.765''' | |'''3\7,''' '''211.765''' | ||
|'''4\9,''' '''218. | |'''4\9,''' '''218.182''' | ||
|- | |- | ||
|2# | |2# | ||
Line 628: | Line 657: | ||
|8\12, 331.034 | |8\12, 331.034 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
| 7\9, 381. | | 7\9, 381.818 | ||
|- | |- | ||
|'''3f''' | |'''3f''' | ||
Line 637: | Line 666: | ||
|'''7\12,''' '''289.655''' | |'''7\12,''' '''289.655''' | ||
|'''4\7,''' '''282.353''' | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272. | |'''5\9,''' '''272.727''' | ||
|- | |- | ||
|3 | |3 | ||
Line 647: | Line 676: | ||
|10\12, 413.793 | |10\12, 413.793 | ||
|6\7, 423.529 | |6\7, 423.529 | ||
|8\9, 436. | |8\9, 436.364 | ||
|- | |- | ||
|3# | |3# | ||
Line 666: | Line 695: | ||
|9\12, 372.414 | |9\12, 372.414 | ||
| 5\7, 352.941 | | 5\7, 352.941 | ||
|6\9, 327. | |6\9, 327.273 | ||
|- | |- | ||
!4 | !4 | ||
Line 676: | Line 705: | ||
!'''12\12,''' '''496.552''' | !'''12\12,''' '''496.552''' | ||
!'''7\7,''' '''494.118''' | !'''7\7,''' '''494.118''' | ||
!'''9\9,''' '''490. | !'''9\9,''' '''490.909''' | ||
|- | |- | ||
|4# | |4# | ||
Line 686: | Line 715: | ||
| 15\12, 620.690 | | 15\12, 620.690 | ||
|9\7, 635.294 | |9\7, 635.294 | ||
|12\9, 654. | |12\9, 654.545 | ||
|- | |- | ||
|5f | |5f | ||
Line 695: | Line 724: | ||
|14\12, 579.310 | |14\12, 579.310 | ||
|8\7, 564.706 | |8\7, 564.706 | ||
|10\9, 545. | |10\9, 545.455 | ||
|- | |- | ||
|'''5''' | |'''5''' | ||
Line 705: | Line 734: | ||
|'''17\12,''' '''703.448''' | |'''17\12,''' '''703.448''' | ||
|'''10\7,''' '''705.882''' | |'''10\7,''' '''705.882''' | ||
|'''13\9,''' '''709. | |'''13\9,''' '''709.091''' | ||
|- | |- | ||
|5# | |5# | ||
Line 715: | Line 744: | ||
|20\12, 827.586 | |20\12, 827.586 | ||
| 12\7, 847.059 | | 12\7, 847.059 | ||
|16\9, 872. | |16\9, 872.727 | ||
|- | |- | ||
|'''6f''' | |'''6f''' | ||
Line 724: | Line 753: | ||
|'''19\12,''' '''786.207''' | |'''19\12,''' '''786.207''' | ||
|'''11\7,''' '''776.471''' | |'''11\7,''' '''776.471''' | ||
|'''14\9,''' '''763. | |'''14\9,''' '''763.636''' | ||
|- | |- | ||
|6 | |6 | ||
Line 734: | Line 763: | ||
|22\12, 910.345 | |22\12, 910.345 | ||
|13\7, 917.647 | |13\7, 917.647 | ||
|17\9, 927. | |17\9, 927.727 | ||
|- | |- | ||
|6# | |6# | ||
Line 744: | Line 773: | ||
|25\12, 1034.483 | |25\12, 1034.483 | ||
|15\7, 1058.824 | |15\7, 1058.824 | ||
|20\9, 1090. | |20\9, 1090.909 | ||
|- | |- | ||
|7f | |7f | ||
Line 753: | Line 782: | ||
|21\12, 868.966 | |21\12, 868.966 | ||
|11\7, 776.471 | |11\7, 776.471 | ||
|15\9, 818. | |15\9, 818.182 | ||
|- | |- | ||
!7 | !7 | ||
Line 763: | Line 792: | ||
!24\12, 993.103 | !24\12, 993.103 | ||
!14\7, 988.235 | !14\7, 988.235 | ||
!18\9, 981. | !18\9, 981.818 | ||
|- | |- | ||
|7# | |7# | ||
Line 773: | Line 802: | ||
|27\12, 1117.241 | |27\12, 1117.241 | ||
|16\7, 1129.412 | |16\7, 1129.412 | ||
|21\9, 1145. | |21\9, 1145.455 | ||
|- | |- | ||
|8f | |8f | ||
Line 782: | Line 811: | ||
| 26\12, 1075.862 | | 26\12, 1075.862 | ||
|15\7, 1058.824 | |15\7, 1058.824 | ||
|19\9, 1036. | |19\9, 1036.364 | ||
|- | |- | ||
|'''8''' | |'''8''' | ||
Line 802: | Line 831: | ||
|32\12, 1324.138 | |32\12, 1324.138 | ||
|19\7, 1341.176 | |19\7, 1341.176 | ||
|25\9, 1363. | |25\9, 1363.636 | ||
|- | |- | ||
|'''9f''' | |'''9f''' | ||
Line 811: | Line 840: | ||
|'''31\12,''' '''1282.759''' | |'''31\12,''' '''1282.759''' | ||
|'''18\7,''' '''1270.588''' | |'''18\7,''' '''1270.588''' | ||
|'''23\9,''' '''1254. | |'''23\9,''' '''1254.545''' | ||
|- | |- | ||
|9 | |9 | ||
Line 821: | Line 850: | ||
|34\12, 1406.897 | |34\12, 1406.897 | ||
|20\7, 1411.765 | |20\7, 1411.765 | ||
|26\9, 1418. | |26\9, 1418.182 | ||
|- | |- | ||
|9# | |9# | ||
Line 831: | Line 860: | ||
|37\12, 1531.034 | |37\12, 1531.034 | ||
|22\7, 1552.941 | |22\7, 1552.941 | ||
|29\9, 1581. | |29\9, 1581.818 | ||
|- | |- | ||
|Af | |Af | ||
Line 840: | Line 869: | ||
|33\12, 1365.517 | |33\12, 1365.517 | ||
|19\7, 1341.176 | |19\7, 1341.176 | ||
|24\9, 1309. | |24\9, 1309.091 | ||
|- | |- | ||
!A | !A | ||
Line 850: | Line 879: | ||
!36\12, 1489.655 | !36\12, 1489.655 | ||
!21\7, 1482.353 | !21\7, 1482.353 | ||
!27\9, 1472. | !27\9, 1472.727 | ||
|- | |- | ||
|A# | |A# | ||
Line 860: | Line 889: | ||
|39\12, 1613.793 | |39\12, 1613.793 | ||
|23\7, 1623.529 | |23\7, 1623.529 | ||
|30\9, 1636. | |30\9, 1636.364 | ||
|- | |- | ||
|Bf | |Bf | ||
Line 879: | Line 908: | ||
|'''41\12,''' '''1696.552''' | |'''41\12,''' '''1696.552''' | ||
|'''24\7,''' '''1694.118''' | |'''24\7,''' '''1694.118''' | ||
|'''31\9,''' '''1690. | |'''31\9,''' '''1690.909''' | ||
|- | |- | ||
|B# | |B# | ||
Line 889: | Line 918: | ||
|44\12, 1820.690 | |44\12, 1820.690 | ||
|26\7, 1835.294 | |26\7, 1835.294 | ||
|34\9, 1854. | |34\9, 1854.545 | ||
|- | |- | ||
|'''Cf''' | |'''Cf''' | ||
Line 898: | Line 927: | ||
|'''43\12,''' '''1779.310''' | |'''43\12,''' '''1779.310''' | ||
|'''25\7,''' '''1764.706''' | |'''25\7,''' '''1764.706''' | ||
|'''32\9,''' '''1745. | |'''32\9,''' '''1745.455''' | ||
|- | |- | ||
|C | |C | ||
Line 908: | Line 937: | ||
|46\12, 1903.448 | |46\12, 1903.448 | ||
|27\7, 1905.882 | |27\7, 1905.882 | ||
|35\9, 1909. | |35\9, 1909.090 | ||
|- | |- | ||
|C# | |C# | ||
Line 918: | Line 947: | ||
|49\12, 2027.586 | |49\12, 2027.586 | ||
|29\7, 2047.059 | |29\7, 2047.059 | ||
|38\9, 2072. | |38\9, 2072.727 | ||
|- | |- | ||
|Df | |Df | ||
Line 937: | Line 966: | ||
!48\12, 1986.207 | !48\12, 1986.207 | ||
!28\7, 1976.471 | !28\7, 1976.471 | ||
!36\9, 1963. | !36\9, 1963.636 | ||
|- | |- | ||
|D# | |D# | ||
Line 947: | Line 976: | ||
|51\12, 2110.345 | |51\12, 2110.345 | ||
|30\7, 2117.647 | |30\7, 2117.647 | ||
|39\9, 2127. | |39\9, 2127.273 | ||
|- | |- | ||
|Ef | |Ef | ||
Line 956: | Line 985: | ||
|50\12, 2068.966 | |50\12, 2068.966 | ||
|29\7, 2047.059 | |29\7, 2047.059 | ||
|37\9, 2018. | |37\9, 2018.182 | ||
|- | |- | ||
|'''E''' | |'''E''' | ||
Line 966: | Line 995: | ||
|'''53\12,''' '''2193.103''' | |'''53\12,''' '''2193.103''' | ||
|'''31\7,''' '''2188.235''' | |'''31\7,''' '''2188.235''' | ||
|'''40\9,''' '''2181. | |'''40\9,''' '''2181.818''' | ||
|- | |- | ||
|E# | |E# | ||
Line 976: | Line 1,005: | ||
|56\12, 2317.241 | |56\12, 2317.241 | ||
|33\7, 2329.412 | |33\7, 2329.412 | ||
|43\9, 2345. | |43\9, 2345.455 | ||
|- | |- | ||
|'''Ff''' | |'''Ff''' | ||
Line 985: | Line 1,014: | ||
|'''55\12,''' '''2275.864''' | |'''55\12,''' '''2275.864''' | ||
|'''32\7,''' '''2258.824''' | |'''32\7,''' '''2258.824''' | ||
|'''41\9,''' '''2236. | |'''41\9,''' '''2236.364''' | ||
|- | |- | ||
|F | |F | ||
Line 1,005: | Line 1,034: | ||
|61\12, 2524.138 | |61\12, 2524.138 | ||
|36\7, 2541.176 | |36\7, 2541.176 | ||
|47/9, 2563. | |47/9, 2563.636 | ||
|- | |- | ||
|1f | |1f | ||
Line 1,014: | Line 1,043: | ||
|57\12, 2358.621 | |57\12, 2358.621 | ||
|33\7, 2329.412 | |33\7, 2329.412 | ||
|42\9, 2390. | |42\9, 2390.909 | ||
|- | |- | ||
! 1 | ! 1 | ||
Line 1,024: | Line 1,053: | ||
!60\12, 2482.759 | !60\12, 2482.759 | ||
!35\7, 2470.588 | !35\7, 2470.588 | ||
!45\9, 2454. | !45\9, 2454.545 | ||
|- | |- | ||
|1# | |1# | ||
Line 1,034: | Line 1,063: | ||
|63\12, 2606.897 | |63\12, 2606.897 | ||
|37\7, 2611.765 | |37\7, 2611.765 | ||
|48\9, 2618. | |48\9, 2618.182 | ||
|- | |- | ||
|2f | |2f | ||
Line 1,043: | Line 1,072: | ||
|62\12, 2565.517 | |62\12, 2565.517 | ||
|36\7, 2541.176 | |36\7, 2541.176 | ||
|46\9, 2509. | |46\9, 2509.091 | ||
|- | |- | ||
|'''2''' | |'''2''' | ||
Line 1,053: | Line 1,082: | ||
|'''65\12,''' '''2689.655''' | |'''65\12,''' '''2689.655''' | ||
|'''38\7,''' '''2682.353''' | |'''38\7,''' '''2682.353''' | ||
|'''49\9,''' '''2672. | |'''49\9,''' '''2672.727''' | ||
|- | |- | ||
|2# | |2# | ||
Line 1,063: | Line 1,092: | ||
|68\12, 2813.793 | |68\12, 2813.793 | ||
|40\7, 2823.529 | |40\7, 2823.529 | ||
|52\9, 2836. | |52\9, 2836.364 | ||
|- | |- | ||
|'''3f''' | |'''3f''' | ||
Line 1,072: | Line 1,101: | ||
|'''67\12,''' '''2772.034''' | |'''67\12,''' '''2772.034''' | ||
|'''39\7,''' '''2752.941''' | |'''39\7,''' '''2752.941''' | ||
|'''50\9,''' '''2727. | |'''50\9,''' '''2727.273''' | ||
|- | |- | ||
| 3 | | 3 | ||
Line 1,082: | Line 1,111: | ||
|70\12, 2896.552 | |70\12, 2896.552 | ||
|41\7, 2894.118 | |41\7, 2894.118 | ||
|53\9, 2890. | |53\9, 2890.909 | ||
|- | |- | ||
|3# | |3# | ||
Line 1,101: | Line 1,130: | ||
|69\29, 2855.172 | |69\29, 2855.172 | ||
|40\7, 2823.529 | |40\7, 2823.529 | ||
|52\9, 2836. | |52\9, 2836.364 | ||
|- | |- | ||
!4 | !4 | ||
Line 1,111: | Line 1,140: | ||
!72\12, 29'''79.310''' | !72\12, 29'''79.310''' | ||
!42\7, 2964.706 | !42\7, 2964.706 | ||
!54\9, 2945. | !54\9, 2945.455 | ||
|} | |} | ||
==Intervals== | ==Intervals== | ||
Line 1,720: | Line 1,749: | ||
[[2L 1s (4/3-equivalent)]] - idealized tuning | [[2L 1s (4/3-equivalent)]] - idealized tuning | ||
[[4L 2s (7/4-equivalent)]] - Mixolydian Archytas temperament | [[4L 2s (7/4-equivalent)]] - Mixolydian and Dorian hexatonic Archytas temperament | ||
[[4L 2s (39/22-equivalent)]] - Mixolydian Neogothic temperament | [[4L 2s (39/22-equivalent)]] - Mixolydian and Dorian hexatonic Neogothic temperament | ||
[[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian Komornik–Loreti temperament | [[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian and Dorian hexatonic Komornik–Loreti temperament | ||
[[4L 2s (9/5-equivalent)]] - Mixolydian Meantone temperament | [[4L 2s (9/5-equivalent)]] - Mixolydian and Dorian hexatonic Meantone temperament | ||
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament | [[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament |
Revision as of 15:26, 15 October 2024
2L 1s<perfect fourth>, is a perfect fourth-repeating MOS scale. The notation "<perfect fourth>" means the period of the MOS is a perfect fourth, disambiguating it from octave-repeating 2L 1s.
The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).
In the fourth-repeating version of the diatonic scale, each tone has a 4/3 perfect fourth above it. The scale has one major chord and two minor chords.
Basic diatonic is in 5ed4/3, which is a very good fourth-based equal tuning similar to 12edo.
Notation
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the genchain harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | ||
---|---|---|---|---|---|---|---|---|---|
Fourth | Seventh | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 | |
Mixolydian | Dorian | ||||||||
Do#, Sol# | Sol# | Re# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
Reb, Lab | Lab | Mib | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
Re, La | La | Mi | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
Re#, La# | La# | Mi# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
Mib, Sib | Sib | Fa | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
Mi, Si | Si | Fa# | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
Mi#, Si# | Si# | Fax | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
Dob, Solb | Dob | Solb | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
Do, Sol | Do | Sol | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
Do#, Sol# | Do# | Sol# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
Reb, Lab | Reb | Lab | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
Re, La | Re | La | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
Re#, La# | Re# | La# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.294 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
Mib, Sib | Mib | Sib | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
Mi, Si | Mi | Si | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
Mi#, Si# | Mi# | Si# | 20\11, 923.077 | 15\8, 947.378 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
Dob, Solb | Solb | Reb | 21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
Do, Sol | Sol | Re | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Mahur | Bijou | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
G# | 0#, E# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
Jf, Af | 1b, 1d | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
J, A | 1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
J#, A# | 1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.968 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
Af, Bf | 2b, 2d | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
A, B | 2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
A#, B# | 2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
Bb, Cf | 3b, 3d | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
B, C | 3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
B#, C# | 3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
Cf, Qf | 4b, 4d | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
C, Q | 4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
C#, Q# | 4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
Qf, Df | 5b, 5d | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
Q, D | 5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
Q#, D# | 5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
Df, Sf | 6b, 6d | 21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
D, S | 6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
D#, S# | 6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
Ef | 7b, 7d | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
E | 7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
E# | 7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
Ff | 8b, Gd | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
F | 8, G | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
F# | 8#, G# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
Gf | 9b, Ad | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
G | 9, A | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
G# | 9#, A# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Jf, Af | Xb, Bd | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
J, A | X, B | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
J#, A# | X#, B# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
Af, Bf | Eb, Dd | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
A, B | E, D | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
A#, B# | E#, D# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
Bb, Cf | 0b, Ed | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
B, C | 0, E | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Hyperionic | Subsextal | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
1# | 0# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
2f | 1f | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
2 | 1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
2# | 1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
3f | 2f | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
3 | 2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.098 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
3# | 2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
4f | 3f | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
4 | 3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
4# | 3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
5f | 4f | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
5 | 4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
5# | 4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
6f | 5f | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
6 | 5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
6# | 5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
7f | 6f | 21\11, 969.231 | 24\13, 929.032 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
7 | 6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
7# | 6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
8f | 7f | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
8 | 7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
8# | 7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
9f | 8f | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
9 | 8 | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
9# | 8# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
Af | 9f | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
A | 9 | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
A# | 9# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Bf | Xb | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
B | X | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
B# | X# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
Cf | ɛf | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
C | ɛ | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
C# | ɛ# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
Df | Af | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
D | A | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
D# | A# | 45\11, 2076.923 | 33\8, 2084.211 | 54\13, 2090.323 | 21\5, 2100 | 51\12, 2110.345 | 30\7, 2117.647 | 39\9, 2127.273 |
Ef | Bf | 47\11, 2169.231 | 34\8, 2147.368 | 55\13, 2129.032 | 50\12, 2068.966 | 29\7, 2047.059 | 37\9, 2018.182 | |
E | B | 48\11, 2215.385 | 35\8, 2210.526 | 57\13, 2206.452 | 22\5, 2200 | 53\12, 2193.103 | 31\7, 2188.235 | 40\9, 2181.818 |
E# | B# | 49\11, 2261.538 | 36\8, 2273.684 | 59\13, 2283.871 | 23\5, 2300 | 56\12, 2317.241 | 33\7, 2329.412 | 43\9, 2345.455 |
Ff | Cf | 51\11, 2353.846 | 37\8, 2336.842 | 61\13, 2322.581 | 55\12, 2275.864 | 32\7, 2258.824 | 41\9, 2236.364 | |
F | C | 52\11, 2400 | 38\8, 2400 | 62\13, 2400 | 24\5, 2400 | 58\12, 2400 | 34\7, 2400 | 44\9, 2400 |
F# | C# | 53\11, 2446.154 | 39\8, 2463.158 | 64\13, 2477.419 | 25\5, 2500 | 61\12, 2524.138 | 36\7, 2541.176 | 47/9, 2563.636 |
1f | Df | 54\11, 2492.308 | 63\13, 2438.710 | 24\5, 2400 | 57\12, 2358.621 | 33\7, 2329.412 | 42\9, 2390.909 | |
1 | D | 55\11, 2538.462 | 40\8, 2526.316 | 65\13, 2516.129 | 25\5, 2500 | 60\12, 2482.759 | 35\7, 2470.588 | 45\9, 2454.545 |
1# | D# | 56\11, 2584.615 | 41\8, 2589.474 | 67\13, 2593.548 | 26\5, 2600 | 63\12, 2606.897 | 37\7, 2611.765 | 48\9, 2618.182 |
2f | Ef | 58\11, 2676.923 | 42\8, 2652.632 | 69\13, 2670.968 | 62\12, 2565.517 | 36\7, 2541.176 | 46\9, 2509.091 | |
2 | E | 59\11, 2723.077 | 43\8, 2715.789 | 70\13, 2709.677 | 27\5, 2700 | 65\12, 2689.655 | 38\7, 2682.353 | 49\9, 2672.727 |
2# | E# | 60\11, 2769.231 | 44\8, 2778.947 | 72\13, 2787.097 | 28\5, 2800 | 68\12, 2813.793 | 40\7, 2823.529 | 52\9, 2836.364 |
3f | Ff | 62\11, 2861.538 | 45\8, 2842.105 | 73\13, 2825.806 | 67\12, 2772.034 | 39\7, 2752.941 | 50\9, 2727.273 | |
3 | F | 63\11, 2907.692 | 46\8, 2905.263 | 75\13, 2903.226 | 29\5, 2900 | 70\12, 2896.552 | 41\7, 2894.118 | 53\9, 2890.909 |
3# | F# | 64\11, 2953.846 | 47\8, 2968.421 | 77\13, 2980.645 | 30\5, 3000 | 73\12, 3020.690 | 43\7, 3035.294 | 55\9, 3000 |
4f | 0f | 65\11, 3000 | 76\13, 2941.935 | 29\5, 2900 | 69\29, 2855.172 | 40\7, 2823.529 | 52\9, 2836.364 | |
4 | 0 | 66\11, 3046.154 | 48\8, 3031.579 | 78\13, 3019.355 | 30\5, 3000 | 72\12, 2979.310 | 42\7, 2964.706 | 54\9, 2945.455 |
Intervals
Generators | Fourth notation | Interval category name | Generators | Notation of 4/3 inverse | Interval category name |
---|---|---|---|---|---|
The 3-note MOS has the following intervals (from some root): | |||||
0 | Do, Sol | perfect unison | 0 | Do, Sol | perfect fourth |
1 | Mib, Sib | diminished third | -1 | Re, La | perfect second |
2 | Reb, Lab | diminished second | -2 | Mi, Si | perfect third |
The chromatic 5-note MOS also has the following intervals (from some root): | |||||
3 | Dob, Solb | diminished fourth | -3 | Do#, Sol# | augmented unison (chroma) |
4 | Mibb, Sibb | doubly diminished third | -4 | Re#, La# | augmented second |
Genchain
The generator chain for this scale is as follows:
Mibb
Sibb |
Dob
Solb |
Reb
Lab |
Mib
Sib |
Do
Sol |
Re
La |
Mi
Si |
Do#
Sol# |
Re#
La# |
Mi#
Si# |
dd3 | d4 | d2 | d3 | P1 | P2 | P3 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fourth:
Mode | Scale | UDP | Interval type | |
---|---|---|---|---|
name | pattern | notation | 2nd | 3rd |
Major | LLs | 2|0 | P | P |
Minor | LsL | 1|1 | P | d |
Phrygian | sLL | 0|2 | d | d |
Temperaments
The most basic rank-2 temperament interpretation of diatonic is Mahuric. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled root-2g-(p+g)
(p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations.
Mahuric-Meantone
Subgroup: 4/3.5/4.3/2
POL2 generator: ~9/8 = 193.6725¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 8ed4/3, 13ed4/3)
Mahuric-Superpyth
Subgroup: 4/3.9/7.3/2
POL2 generator: ~8/7 = 216.7325¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3)
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments |
---|---|---|---|---|---|
1\3 | 171.429 | 1 | 1 | 1.000 | Equalised |
6\17 | 180.000 | 6 | 5 | 1.200 | |
5\14 | 181.818 | 5 | 4 | 1.250 | |
14\39 | 182.609 | 14 | 11 | 1.273 | |
9\25 | 183.051 | 9 | 7 | 1.286 | |
4\11 | 184.615 | 4 | 3 | 1.333 | |
11\30 | 185.915 | 11 | 8 | 1.375 | |
7\19 | 186.667 | 7 | 5 | 1.400 | |
10\27 | 187.500 | 10 | 7 | 1.429 | |
13\35 | 187.952 | 13 | 9 | 1.444 | |
16\43 | 188.253 | 16 | 11 | 1.4545 | |
3\8 | 189.474 | 3 | 2 | 1.500 | Mahuric-Meantone starts here |
14\37 | 190.909 | 14 | 9 | 1.556 | |
11\29 | 191.304 | 11 | 7 | 1.571 | |
8\21 | 192.000 | 8 | 5 | 1.600 | |
5\13 | 193.548 | 5 | 3 | 1.667 | |
12\31 | 194.595 | 12 | 7 | 1.714 | |
7\18 | 195.348 | 7 | 4 | 1.750 | |
9\23 | 196.364 | 9 | 5 | 1.800 | |
11\28 | 197.015 | 11 | 6 | 1.833 | |
13\33 | 197.468 | 13 | 7 | 1.857 | |
15\38 | 197.802 | 15 | 8 | 1.875 | |
17\43 | 198.058 | 17 | 9 | 1.889 | |
19\48 | 198.261 | 19 | 10 | 1.900 | |
21\53 | 198.425 | 21 | 11 | 1.909 | |
23\58 | 198.561 | 23 | 12 | 1.917 | |
25\63 | 198.675 | 25 | 13 | 1.923 | |
27\68 | 198.773 | 27 | 14 | 1.929 | |
29\73 | 198.857 | 29 | 15 | 1.933 | |
31\78 | 198.930 | 31 | 16 | 1.9375 | |
33\83 | 198.995 | 33 | 17 | 1.941 | |
35\88 | 199.052 | 35 | 18 | 1.944 | |
2\5 | 200.000 | 2 | 1 | 2.000 | Mahuric-Meantone ends, Mahuric-Pythagorean begins |
17\42 | 201.980 | 17 | 8 | 2.125 | |
15\37 | 202.247 | 15 | 7 | 2.143 | |
13\32 | 202.597 | 13 | 6 | 2.167 | |
11\27 | 203.077 | 11 | 5 | 2.200 | |
9\22 | 203.774 | 9 | 4 | 2.250 | |
7\17 | 204.878 | 7 | 3 | 2.333 | |
12\29 | 205.714 | 12 | 5 | 2.400 | |
5\12 | 206.897 | 5 | 2 | 2.500 | Mahuric-Neogothic heartland is from here… |
18\43 | 207.693 | 18 | 7 | 2.571 | |
13\31 | 208.000 | 13 | 5 | 2.600 | |
8\19 | 208.696 | 8 | 3 | 2.667 | …to here |
11\26 | 209.524 | 11 | 4 | 2.750 | |
14\33 | 210.000 | 14 | 5 | 2.800 | |
3\7 | 211.755 | 3 | 1 | 3.000 | Mahuric-Pythagorean ends, Mahuric-Superpyth begins |
22\51 | 212.903 | 22 | 7 | 3.143 | |
19\44 | 213.084 | 19 | 6 | 3.167 | |
16\37 | 213.333 | 16 | 5 | 3.200 | |
13\30 | 213.699 | 13 | 4 | 3.250 | |
10\23 | 214.286 | 10 | 3 | 3.333 | |
7\16 | 215.385 | 7 | 2 | 3.500 | |
11\25 | 216.393 | 11 | 3 | 3.667 | |
15\34 | 216.867 | 15 | 4 | 3.750 | |
19\43 | 217.143 | 19 | 5 | 3.800 | |
4\9 | 218.18 | 4 | 1 | 4.000 | |
13\29 | 219.718 | 13 | 3 | 4.333 | |
9\20 | 220.408 | 9 | 2 | 4.500 | |
14\31 | 221.053 | 14 | 3 | 4.667 | |
5\11 | 222.222 | 5 | 1 | 5.000 | Mahuric-Superpyth ends |
11\24 | 223.728 | 11 | 2 | 5.500 | |
17\37 | 224.176 | 17 | 3 | 5.667 | |
6\13 | 225.000 | 6 | 1 | 6.000 | |
1\3 | 240.000 | 1 | 0 | → inf | Paucitonic |
See also
2L 1s (4/3-equivalent) - idealized tuning
4L 2s (7/4-equivalent) - Mixolydian and Dorian hexatonic Archytas temperament
4L 2s (39/22-equivalent) - Mixolydian and Dorian hexatonic Neogothic temperament
4L 2s (Komornik–Loreti constant-equivalent) - Mixolydian and Dorian hexatonic Komornik–Loreti temperament
4L 2s (9/5-equivalent) - Mixolydian and Dorian hexatonic Meantone temperament
6L 3s (7/3-equivalent) - Mahuric-Archytas temperament
6L 3s (26/11-equivalent) - Mahuric-Neogothic temperament
6L 3s (12/5-equivalent) - Mahuric-Meantone temperament
8L 4s (28/9-equivalent) - Bijou Archytas temperament
8L 4s (22/7-equivalent) and 8L 4s ([math]π[/math]-equivalent) - Bijou Neogothic temperament
8L 4s (16/5-equivalent) - Bijou Meantone temperament
10L 5s (112/27-equivalent) - Hyperionic Archytas temperament
10L 5s (88/21-equivalent) - Hyperionic Neogothic temperament
10L 5s (30/7-equivalent) - Hyperionic Meantone temperament
12L 6s (11/2-equivalent) - Low undecimal Subsextal temperament
12L 6s (28/5-equivalent) - Low septimal Subsextal temperament
12L 6s (40/7-equivalent) - High septimal Subsextal temperament
12L 6s (64/11-equivalent) - High undecimal Subsextal temperament