125edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Cleanup
Cleanup
Line 3: Line 3:


== Theory ==
== Theory ==
125edo defines the [[optimal patent val]] for 7- and 11-limit [[slender]] temperament. It tempers out [[15625/15552]] in the 5-limit; [[225/224]] and [[4375/4374]] in the 7-limit; [[385/384]] and [[540/539]] in the 11-limit. In the 13-limit the 125f val {{val| 125 198 290 351 432 462 }} does a better job, where it tempers out [[169/168]], [[325/324]], [[351/350]], [[625/624]] and [[676/675]], providing a good tuning for [[catakleismic]].  
The equal temperament [[tempering out|tempers out]] [[15625/15552]] in the 5-limit; [[225/224]] and [[4375/4374]] in the 7-limit; [[385/384]] and [[540/539]] in the 11-limit. It defines the [[optimal patent val]] for 7- and 11-limit [[slender]] temperament. In the 13-limit the 125f val {{val| 125 198 290 351 432 462 }} does a better job, where it tempers out [[169/168]], [[325/324]], [[351/350]], [[625/624]] and [[676/675]], providing a good tuning for [[catakleismic]].  


=== Prime harmonics ===
=== Prime harmonics ===
Line 9: Line 9:


=== Miscellaneous properties ===
=== Miscellaneous properties ===
125 is 5 cubed. Being the cube closest to division of the octave by the Germanic [[Wikipedia: Long hundred|long hundred]], 125edo has a unit step which is the cubic (fine) relative cent of [[1edo]].
125 is 5 cubed. Being the cube closest to division of the octave by the Germanic {{w|long hundred}}, 125edo has a unit step which is the cubic (fine) relative cent of [[1edo]].


== Regular temperament properties ==
== Regular temperament properties ==
Line 62: Line 62:
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
Line 121: Line 121:
| [[Pental]]
| [[Pental]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


[[Category:Catakleismic]]
[[Category:Catakleismic]]

Revision as of 05:46, 29 May 2024

← 124edo 125edo 126edo →
Prime factorization 53
Step size 9.6 ¢ 
Fifth 73\125 (700.8 ¢)
Semitones (A1:m2) 11:10 (105.6 ¢ : 96 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

The equal temperament tempers out 15625/15552 in the 5-limit; 225/224 and 4375/4374 in the 7-limit; 385/384 and 540/539 in the 11-limit. It defines the optimal patent val for 7- and 11-limit slender temperament. In the 13-limit the 125f val 125 198 290 351 432 462] does a better job, where it tempers out 169/168, 325/324, 351/350, 625/624 and 676/675, providing a good tuning for catakleismic.

Prime harmonics

Approximation of prime harmonics in 125edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -1.16 -2.31 +0.77 -4.12 +4.27 +0.64 +0.09 -4.27 -2.38 -2.64
Relative (%) +0.0 -12.0 -24.1 +8.1 -42.9 +44.5 +6.7 +0.9 -44.5 -24.8 -27.5
Steps
(reduced)
125
(0)
198
(73)
290
(40)
351
(101)
432
(57)
463
(88)
511
(11)
531
(31)
565
(65)
607
(107)
619
(119)

Miscellaneous properties

125 is 5 cubed. Being the cube closest to division of the octave by the Germanic long hundred, 125edo has a unit step which is the cubic (fine) relative cent of 1edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-198 125 [125 198]] +0.364 0.364 3.80
2.3.5 15625/15552, 17433922005/17179869184 [125 198 290]] +0.575 0.421 4.39
2.3.5.7 225/224, 4375/4374, 589824/588245 [125 198 290 351]] +0.362 0.519 5.40
2.3.5.7.11 225/224, 385/384, 1331/1323, 4375/4374 [125 198 290 351 432]] +0.528 0.570 5.94
2.3.5.7.11.13 169/168, 225/224, 325/324, 385/384, 1331/1323 [125 198 290 351 432 462]] (125f) +0.680 0.622 6.47

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 4\125 38.4 49/48 Slender
1 12\125 115.2 77/72 Semigamera
1 19\125 182.4 10/9 Mitonic
1 24\125 230.4 8/7 Gamera
1 33\125 316.8 6/5 Catakleismic
1 52\125 499.2 4/3 Gracecordial
1 61\125 585.6 7/5 Merman
5 26\125
(1\125)
249.6
(9.6)
81/70
(176/175)
Hemipental
5 52\125
(2\125)
499.2
(19.2)
4/3
(81/80)
Pental

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct