Talk:Constant structure: Difference between revisions
m 1 revision imported: Moving archived Wikispaces discussion to subpage |
discuss the diatonic scale example |
||
Line 1: | Line 1: | ||
{{WSArchiveLink}} | {{WSArchiveLink}} | ||
== Note names in the diatonic scale == | |||
The Examples section currently contains the following table: | |||
---- | |||
Interval matrix as note names: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |||
! C | |||
| C | |||
| D | |||
| E | |||
| F | |||
| G | |||
| A | |||
| B | |||
| C | |||
|- | |||
! D | |||
| C | |||
| D | |||
| Eb | |||
| F | |||
| G | |||
| A | |||
| Bb | |||
| C | |||
|- | |||
! E | |||
| C | |||
| Db | |||
| Eb | |||
| F | |||
| G | |||
| Ab | |||
| Bb | |||
| C | |||
|- | |||
! F | |||
| C | |||
| D | |||
| E | |||
| <span style="background-color: #ffcc44;">F#</span> | |||
| G | |||
| A | |||
| B | |||
| C | |||
|- | |||
! G | |||
| C | |||
| D | |||
| E | |||
| F | |||
| G | |||
| A | |||
| Bb | |||
| C | |||
|- | |||
! A | |||
| C | |||
| D | |||
| Eb | |||
| F | |||
| G | |||
| Ab | |||
| Bb | |||
| C | |||
|- | |||
! B | |||
| C | |||
| Db | |||
| Eb | |||
| F | |||
| <span style="background-color: #ffcc44;">Gb</span> | |||
| Ab | |||
| Bb | |||
| C | |||
|} | |||
---- | |||
This usage seems incoherent to me: if the scale in the example is the diatonic scale containing C, D, E, F, G, A, and B, then _the scale in question doesn't contain any notes with sharps or flats_, and it's nonsensical to talk about those notes. Instead, the table should describe the notes from a single scale, and the paragraph that follows it should also refer to the notes within that same scale. | |||
I suggest something like the following instead: | |||
---- | |||
Interval matrix as steps of 12edo: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |||
! 0\12 | |||
| 0\12 | |||
| 2\12 | |||
| 4\12 | |||
| 5\12 | |||
| 7\12 | |||
| 9\12 | |||
| 11\12 | |||
| 12\12 | |||
|- | |||
! 2\12 | |||
| 0\12 | |||
| 2\12 | |||
| 3\12 | |||
| 5\12 | |||
| 7\12 | |||
| 9\12 | |||
| 10\12 | |||
| 12\12 | |||
|- | |||
! 4\12 | |||
| 0\12 | |||
| 1\12 | |||
| 3\12 | |||
| 5\12 | |||
| 7\12 | |||
| 8\12 | |||
| 10\12 | |||
| 12\12 | |||
|- | |||
! 5\12 | |||
| 0\12 | |||
| 2\12 | |||
| 4\12 | |||
| <span style="background-color: #ffcc44;">6\12</span> | |||
| 7\12 | |||
| 9\12 | |||
| 11\12 | |||
| 12\12 | |||
|- | |||
! 7\12 | |||
| 0\12 | |||
| 2\12 | |||
| 4\12 | |||
| 5\12 | |||
| 7\12 | |||
| 9\12 | |||
| 10\12 | |||
| 12\12 | |||
|- | |||
! 9\12 | |||
| 0\12 | |||
| 2\12 | |||
| 3\12 | |||
| 5\12 | |||
| 7\12 | |||
| 8\12 | |||
| 10\12 | |||
| 12\12 | |||
|- | |||
! 11\12 | |||
| 0\12 | |||
| 1\12 | |||
| 3\12 | |||
| 5\12 | |||
| <span style="background-color: #ffcc44;">6\12</span> | |||
| 8\12 | |||
| 10\12 | |||
| 12\12 | |||
|} | |||
Interval matrix as note names: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |||
! C | |||
| C | |||
| D | |||
| E | |||
| F | |||
| G | |||
| A | |||
| B | |||
| C | |||
|- | |||
! D | |||
| D | |||
| E | |||
| F | |||
| G | |||
| A | |||
| B | |||
| C | |||
| D | |||
|- | |||
! E | |||
| E | |||
| F | |||
| G | |||
| A | |||
| B | |||
| C | |||
| D | |||
| E | |||
|- | |||
! F | |||
| F | |||
| G | |||
| A | |||
| <span style="background-color: #ffcc44;">B</span> | |||
| C | |||
| D | |||
| E | |||
| F | |||
|- | |||
! G | |||
| G | |||
| A | |||
| B | |||
| C | |||
| D | |||
| E | |||
| F | |||
| G | |||
|- | |||
! A | |||
| A | |||
| B | |||
| C | |||
| D | |||
| E | |||
| F | |||
| G | |||
| A | |||
|- | |||
! B | |||
| B | |||
| C | |||
| D | |||
| E | |||
| <span style="background-color: #ffcc44;">F</span> | |||
| G | |||
| A | |||
| B | |||
|} | |||
In 12edo, the intervals from F to B and from B to F are the same size: 6\12, or 600 cents. From F to B, this interval spans four steps of our diatonic scale; but from B to F it spans five. Since the same (600¢) interval spans different numbers of scale steps at different points in the scale, this scale is not a constant structure. | |||
However, in tunings that assign different interval sizes for F–B and B–F — such as meantone and superpyth — the diatonic scale ''is'' a constant structure. For example, 31edo (meantone) tunes F–B and B–F to 15\31 (581¢) and 16\31 (619¢) respectively, so the four-scale-step interval is distinct from the five-scale-step one: | |||
{| class="wikitable center-all" | |||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |||
! 0\31 | |||
| 0\31 | |||
| 5\31 | |||
| 10\31 | |||
| 13\31 | |||
| 18\31 | |||
| 23\31 | |||
| 28\31 | |||
| 31\31 | |||
|- | |||
! 5\31 | |||
| 0\31 | |||
| 5\31 | |||
| 8\31 | |||
| 13\31 | |||
| 18\31 | |||
| 23\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 10\31 | |||
| 0\31 | |||
| 3\31 | |||
| 8\31 | |||
| 13\31 | |||
| 18\31 | |||
| 21\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 13\31 | |||
| 0\31 | |||
| 5\31 | |||
| 10\31 | |||
| <span style="background-color: #ffcc44;">15\31</span> | |||
| 18\31 | |||
| 23\31 | |||
| 28\31 | |||
| 31\31 | |||
|- | |||
! 18\31 | |||
| 0\31 | |||
| 5\31 | |||
| 10\31 | |||
| 13\31 | |||
| 18\31 | |||
| 23\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 23\31 | |||
| 0\31 | |||
| 5\31 | |||
| 8\31 | |||
| 13\31 | |||
| 18\31 | |||
| 21\31 | |||
| 26\31 | |||
| 31\31 | |||
|- | |||
! 28\31 | |||
| 0\31 | |||
| 3\31 | |||
| 8\31 | |||
| 13\31 | |||
| <span style="background-color: #ffcc44;">16\31</span> | |||
| 21\31 | |||
| 26\31 | |||
| 31\31 | |||
|} |
Revision as of 04:07, 2 May 2024
![]() |
This page also contains archived Wikispaces discussion. |
Note names in the diatonic scale
The Examples section currently contains the following table:
Interval matrix as note names:
1 | 2 | 3 | 4 | 5 | 6 | 7 | (8) | |
---|---|---|---|---|---|---|---|---|
C | C | D | E | F | G | A | B | C |
D | C | D | Eb | F | G | A | Bb | C |
E | C | Db | Eb | F | G | Ab | Bb | C |
F | C | D | E | F# | G | A | B | C |
G | C | D | E | F | G | A | Bb | C |
A | C | D | Eb | F | G | Ab | Bb | C |
B | C | Db | Eb | F | Gb | Ab | Bb | C |
This usage seems incoherent to me: if the scale in the example is the diatonic scale containing C, D, E, F, G, A, and B, then _the scale in question doesn't contain any notes with sharps or flats_, and it's nonsensical to talk about those notes. Instead, the table should describe the notes from a single scale, and the paragraph that follows it should also refer to the notes within that same scale.
I suggest something like the following instead:
Interval matrix as steps of 12edo:
1 | 2 | 3 | 4 | 5 | 6 | 7 | (8) | |
---|---|---|---|---|---|---|---|---|
0\12 | 0\12 | 2\12 | 4\12 | 5\12 | 7\12 | 9\12 | 11\12 | 12\12 |
2\12 | 0\12 | 2\12 | 3\12 | 5\12 | 7\12 | 9\12 | 10\12 | 12\12 |
4\12 | 0\12 | 1\12 | 3\12 | 5\12 | 7\12 | 8\12 | 10\12 | 12\12 |
5\12 | 0\12 | 2\12 | 4\12 | 6\12 | 7\12 | 9\12 | 11\12 | 12\12 |
7\12 | 0\12 | 2\12 | 4\12 | 5\12 | 7\12 | 9\12 | 10\12 | 12\12 |
9\12 | 0\12 | 2\12 | 3\12 | 5\12 | 7\12 | 8\12 | 10\12 | 12\12 |
11\12 | 0\12 | 1\12 | 3\12 | 5\12 | 6\12 | 8\12 | 10\12 | 12\12 |
Interval matrix as note names:
1 | 2 | 3 | 4 | 5 | 6 | 7 | (8) | |
---|---|---|---|---|---|---|---|---|
C | C | D | E | F | G | A | B | C |
D | D | E | F | G | A | B | C | D |
E | E | F | G | A | B | C | D | E |
F | F | G | A | B | C | D | E | F |
G | G | A | B | C | D | E | F | G |
A | A | B | C | D | E | F | G | A |
B | B | C | D | E | F | G | A | B |
In 12edo, the intervals from F to B and from B to F are the same size: 6\12, or 600 cents. From F to B, this interval spans four steps of our diatonic scale; but from B to F it spans five. Since the same (600¢) interval spans different numbers of scale steps at different points in the scale, this scale is not a constant structure.
However, in tunings that assign different interval sizes for F–B and B–F — such as meantone and superpyth — the diatonic scale is a constant structure. For example, 31edo (meantone) tunes F–B and B–F to 15\31 (581¢) and 16\31 (619¢) respectively, so the four-scale-step interval is distinct from the five-scale-step one:
1 | 2 | 3 | 4 | 5 | 6 | 7 | (8) | |
---|---|---|---|---|---|---|---|---|
0\31 | 0\31 | 5\31 | 10\31 | 13\31 | 18\31 | 23\31 | 28\31 | 31\31 |
5\31 | 0\31 | 5\31 | 8\31 | 13\31 | 18\31 | 23\31 | 26\31 | 31\31 |
10\31 | 0\31 | 3\31 | 8\31 | 13\31 | 18\31 | 21\31 | 26\31 | 31\31 |
13\31 | 0\31 | 5\31 | 10\31 | 15\31 | 18\31 | 23\31 | 28\31 | 31\31 |
18\31 | 0\31 | 5\31 | 10\31 | 13\31 | 18\31 | 23\31 | 26\31 | 31\31 |
23\31 | 0\31 | 5\31 | 8\31 | 13\31 | 18\31 | 21\31 | 26\31 | 31\31 |
28\31 | 0\31 | 3\31 | 8\31 | 13\31 | 16\31 | 21\31 | 26\31 | 31\31 |