362edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|362}} == Theory == 362et is only consistent to the 5-odd-limit, with three mappings possible for the 7-limit: * {{val|362 574 841 1016}} (p..."
 
Francium (talk | contribs)
m typo
Line 7: Line 7:
* {{val|362 574 '''840''' 1016}} (362c),
* {{val|362 574 '''840''' 1016}} (362c),
* {{val|362 574 841 '''1017'''}} (362d).
* {{val|362 574 841 '''1017'''}} (362d).
Using the patent val, it tempers out [[393216/390625]] and {{monzo|25 -48 22}} in the 5-limit; [[4375/4374]], [[458752/455625]] and 11529602/11390625 in the 7-limit, [[support]]ing [[barbados]].
Using the patent val, it tempers out [[393216/390625]] and {{monzo|25 -48 22}} in the 5-limit; [[4375/4374]], [[458752/455625]] and 11529602/11390625 in the 7-limit, [[support]]ing [[barbados]].
Using the 362c val, it tempers out [[2109375/2097152]] and {{monzo|14 -22 9}} in the 5-limit; [[2401/2400]], [[10976/10935]] and 390625/387072 in the 7-limit.
Using the 362c val, it tempers out [[2109375/2097152]] and {{monzo|14 -22 9}} in the 5-limit; [[2401/2400]], [[10976/10935]] and 390625/387072 in the 7-limit.
Using the 362d val, it tempers out 393216/390625 and {{monzo|25 -48 22}} in the 5-limit; [[5120/5103]], 118098/117649 and 1959552/1953125 in the 7-limit.
Using the 362d val, it tempers out 393216/390625 and {{monzo|25 -48 22}} in the 5-limit; [[5120/5103]], 118098/117649 and 1959552/1953125 in the 7-limit.


Line 56: Line 59:
|387.85
|387.85
|5/4
|5/4
|[[Würschmidt}}
|[[Würschmidt]]
|}
|}

Revision as of 18:17, 3 February 2024

← 361edo 362edo 363edo →
Prime factorization 2 × 181
Step size 3.31492 ¢ 
Fifth 212\362 (702.762 ¢) (→ 106\181)
Semitones (A1:m2) 36:26 (119.3 ¢ : 86.19 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

362et is only consistent to the 5-odd-limit, with three mappings possible for the 7-limit:

  • 362 574 841 1016] (patent val),
  • 362 574 840 1016] (362c),
  • 362 574 841 1017] (362d).

Using the patent val, it tempers out 393216/390625 and [25 -48 22 in the 5-limit; 4375/4374, 458752/455625 and 11529602/11390625 in the 7-limit, supporting barbados.

Using the 362c val, it tempers out 2109375/2097152 and [14 -22 9 in the 5-limit; 2401/2400, 10976/10935 and 390625/387072 in the 7-limit.

Using the 362d val, it tempers out 393216/390625 and [25 -48 22 in the 5-limit; 5120/5103, 118098/117649 and 1959552/1953125 in the 7-limit.

Odd harmonics

Approximation of odd harmonics in 362edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.81 +1.53 -0.87 +1.61 -1.04 +1.46 -0.98 +1.12 +0.83 -0.06 +1.56
Relative (%) +24.4 +46.2 -26.2 +48.7 -31.4 +44.1 -29.4 +33.8 +25.0 -1.9 +47.1
Steps
(reduced)
574
(212)
841
(117)
1016
(292)
1148
(62)
1252
(166)
1340
(254)
1414
(328)
1480
(32)
1538
(90)
1590
(142)
1638
(190)

Subsets and supersets

362 factors into 2 × 181, with 2edo and 181edo as its subset edos. 1448edo, which quadruples it, gives a good correction to the harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [287 -181 [362 574]] -0.2547 0.2547 7.68
2.3.5 393216/390625, [25 -48 22 [362 574 841]] -0.3896 0.2822 8.51

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 117\362 387.85 5/4 Würschmidt