Module:Temperament data: Difference between revisions
Jump to navigation
Jump to search
CompactStar (talk | contribs) No edit summary |
CompactStar (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
local rat = require('Module:Rational') | local rat = require('Module:Rational') | ||
local p = {} | local p = {} | ||
-- Utility / matrix functions | |||
local function gcd(a,b) | |||
if type(a) == "number" and type(b) == "number" and | |||
a == math.floor(a) and b == math.floor(b) then | |||
if b == 0 then | |||
return a | |||
else | |||
return gcd(b, a % b) -- tail recursion | |||
end | |||
else | |||
error("Invalid argument to gcd (" .. tostring(a) .. "," .. | |||
tostring(b) .. ")", 2) | |||
end | |||
end | |||
local function matadd(a, b) | local function matadd(a, b) | ||
Line 62: | Line 77: | ||
end | end | ||
end | end | ||
xn = scalarmatmul(a, 0. | xn = scalarmatmul(a, 0.000001) | ||
for i = 1, 30 do | for i = 1, 30 do | ||
Line 86: | Line 101: | ||
end | end | ||
-- Actual temperament-related functions start here | |||
-- Generator list (e.g. 2/1, 3/2 for meantone) is needed so you can input irregular mappings like {{5,8,12},{7,11,16}} for meantone | |||
-- and still have the outputted generators be ~2/1 and ~3/2 | |||
-- (this will be important later so people using the template can just input an ET list instead of having to figure out the mapping) | |||
-- Generators are passed as monzos in the specified subgroup here | |||
function p.get_te_generator(subgroup, mapping, gens) | |||
local w = {} | local w = {} | ||
for i = 1, #subgroup do | for i = 1, #subgroup do | ||
Line 105: | Line 127: | ||
local vw = matmul(mapping, w) | local vw = matmul(mapping, w) | ||
local g = matmul(jw, pseudoinv(vw)) | local g = matmul(jw, pseudoinv(vw)) | ||
local mapping_cols = #mapping[1] | |||
local tempered_subgroup = {} | |||
for i = 1, #subgroup do | |||
tempered_subgroup[i] = 0 | |||
for j = 1, #mapping do | |||
tempered_subgroup[i] = tempered_subgroup[i] + g[1][j] * mapping[j][i] | |||
end | end | ||
end | end | ||
return | return tempered_subgroup | ||
end | end | ||
return p | return p |
Revision as of 05:13, 29 January 2024
Note: Do not invoke this module directly; use the corresponding template instead: Template:Temperament data.
local rat = require('Module:Rational')
local p = {}
-- Utility / matrix functions
local function gcd(a,b)
if type(a) == "number" and type(b) == "number" and
a == math.floor(a) and b == math.floor(b) then
if b == 0 then
return a
else
return gcd(b, a % b) -- tail recursion
end
else
error("Invalid argument to gcd (" .. tostring(a) .. "," ..
tostring(b) .. ")", 2)
end
end
local function matadd(a, b)
local result = {}
for i = 1, #a do
result[i] = {}
for j = 1, #(b[1]) do
result[i][j] = a[i][j] + b[i][j]
end
end
return result
end
local function matsub(a, b)
local result = {}
for i = 1, #a do
result[i] = {}
for j = 1, #(b[1]) do
result[i][j] = a[i][j] - b[i][j]
end
end
return result
end
local function matmul(a, b)
local result = {}
for i = 1, #a do
result[i] = {}
for j = 1, #(b[1]) do
result[i][j] = 0
for k = 1, #(a[1]) do
result[i][j] = result[i][j] + (a[i][k] * b[k][j])
end
end
end
return result
end
local function scalarmatmul(a, b)
local result = {}
for i = 1, #a do
result[i] = {}
for j = 1, #(a[1]) do
result[i][j] = a[i][j] * b
end
end
return result
end
local function matinv(a)
dbl_identity = {}
for i = 1, #a do
dbl_identity[i] = {}
for j = 1, #a do
if i == j then
dbl_identity[i][j] = 2
else
dbl_identity[i][j] = 0
end
end
end
xn = scalarmatmul(a, 0.000001)
for i = 1, 30 do
xn = matmul(xn, matsub(dbl_identity, matmul(a, xn)))
end
return xn
end
local function transpose(a)
local result = {}
for i = 1, #a[1] do
result[i] = {}
for j = 1, #a do
result[i][j] = a[j][i]
end
end
return result
end
local function pseudoinv(a)
return matmul(transpose(a), matinv(matmul(a, transpose(a))))
end
-- Actual temperament-related functions start here
-- Generator list (e.g. 2/1, 3/2 for meantone) is needed so you can input irregular mappings like {{5,8,12},{7,11,16}} for meantone
-- and still have the outputted generators be ~2/1 and ~3/2
-- (this will be important later so people using the template can just input an ET list instead of having to figure out the mapping)
-- Generators are passed as monzos in the specified subgroup here
function p.get_te_generator(subgroup, mapping, gens)
local w = {}
for i = 1, #subgroup do
w[i] = {}
for j = 1, #subgroup do
if i == j then
w[i][j] = math.log(2)/math.log(subgroup[i])
else
w[i][j] = 0
end
end
end
local jw = {{}}
for i = 1, #subgroup do
jw[1][i] = 1
end
local vw = matmul(mapping, w)
local g = matmul(jw, pseudoinv(vw))
local mapping_cols = #mapping[1]
local tempered_subgroup = {}
for i = 1, #subgroup do
tempered_subgroup[i] = 0
for j = 1, #mapping do
tempered_subgroup[i] = tempered_subgroup[i] + g[1][j] * mapping[j][i]
end
end
return tempered_subgroup
end
return p