Module:Temperament data
Jump to navigation
Jump to search
Documentation transcluded from /doc
Note: Do not invoke this module directly; use the corresponding template instead: Template:Temperament data.
Documentation transcluded from /doc
Note: Do not invoke this module directly; use the corresponding template instead: Template:Temperament data.
local rat = require("Module:Rational")
local p = {}
local u = require("Module:Utils")
local function gcd(a,b)
if type(a) == "number" and type(b) == "number" and a == math.floor(a) and b == math.floor(b) then
if b == 0 then
return a
else
return gcd(b, a % b) -- tail recursion
end
else
error("Invalid argument to gcd (" .. tostring(a) .. ", " .. tostring(b) .. ")", 2)
end
end
-- Linear algebra and RTT functions
local function matadd(a, b)
local result = {}
for i = 1, #a do
result[i] = {}
for j = 1, #(b[1]) do
result[i][j] = a[i][j] + b[i][j]
end
end
return result
end
local function matsub(a, b)
local result = {}
for i = 1, #a do
result[i] = {}
for j = 1, #(b[1]) do
result[i][j] = a[i][j] - b[i][j]
end
end
return result
end
local function matmul(a, b)
local result = {}
for i = 1, #a do
result[i] = {}
for j = 1, #(b[1]) do
result[i][j] = 0
for k = 1, #(a[1]) do
result[i][j] = result[i][j] + (a[i][k] * b[k][j])
end
end
end
return result
end
local function scalarmatmul(a, b)
local result = {}
for i = 1, #a do
result[i] = {}
for j = 1, #(a[1]) do
result[i][j] = a[i][j] * b
end
end
return result
end
local function matinv(a)
local xn = scalarmatmul(a, 1e-7)
for i = 1, 75 do
xn = matsub(scalarmatmul(xn, 2), matmul(xn, matmul(a, xn)))
end
return xn
end
local function transpose(a)
local result = {}
for i = 1, #a[1] do
result[i] = {}
for j = 1, #a do
result[i][j] = a[j][i]
end
end
return result
end
local function antitranspose(a)
local result = {}
for i = 1, #a[1] do
result[i] = {}
for j = 1, #a do
result[i][j] = a[#a - j + 1][#a[1] - i + 1]
end
end
return result
end
local function pseudoinv(a)
return matmul(transpose(a), matinv(matmul(a, transpose(a))))
end
local function nullspace(mapping)
local identity = {}
for i = 1, #mapping[1] do
identity[i] = {}
for j = 1, #mapping[1] do
if i == j then
identity[i][j] = 1
else
identity[i][j] = 0
end
end
end
-- local w = {{0},{1},{0}}
-- for i = 1, #mapping[1] do
-- w[i] = {10}
-- end
return matsub(identity, matmul(pseudoinv(mapping), mapping))
end
local function unreduced_mapping_from_basis(comma_basis)
return antitranspose(nullspace(antitranspose(comma_basis)))
end
local function get_reduced_mapping(comma_basis, preimage)
a = pseudoinv(matmul(unreduced_mapping_from_basis(comma_basis), preimage))
for i = 1, #a do
for j = 1, #a[1] do
a[i][j] = math.floor(a[i][j] + 0.5) -- round each entry (they are not exact integers)
end
end
return a
end
local function get_te_generator(subgroup, comma_basis, preimage)
local v = get_reduced_mapping(comma_basis, preimage)
local w = {}
for i = 1, #subgroup do
w[i] = {}
for j = 1, #subgroup do
if i == j then
w[i][j] = math.log(2) / math.log(subgroup[i])
else
w[i][j] = 0
end
end
end
local jw = {{}}
for i = 1, #subgroup do
jw[1][i] = 1
end
local vw = matmul(v, w)
local g = matmul(jw, pseudoinv(vw))
return g
end
local function get_pote_generator(subgroup, comma_basis, preimage)
local period = 1
for i = 1, #subgroup do
period = period * (subgroup[i]^preimage[i][1])
end
local te = get_te_generator(subgroup, comma_basis, preimage)
local stretch_factor = te[1][1] * math.log(2) / math.log(period)
return scalarmatmul(te, 1 / stretch_factor)
end
-- Parsing/display functions
local function int_to_subgroup_monzo(subgroup, x)
local result = {}
local x2 = x
for i = 1, #subgroup do
result[i] = 0
while true do
x2 = x2 / subgroup[i]
if x2 ~= math.floor(x2) then
break
end
result[i] = result[i] + 1
end
x2 = x
end
return result
end
local function rat_to_subgroup_monzo(subgroup, x)
local n, d = rat.as_pair(x)
return matsub({int_to_subgroup_monzo(subgroup, n)}, {int_to_subgroup_monzo(subgroup, d)})[1]
end
local function rat_list_to_matrix(subgroup, list)
local result = {}
for j = 1, #subgroup do
result[j] = {}
end
for i = 1, #list do
local smonzo = rat_to_subgroup_monzo(subgroup, list[i])
for j = 1, #subgroup do
result[j][i] = smonzo[j]
end
end
return result
end
local function mysplit (inputstr, sep)
if sep == nil then
sep = "%s"
end
local t = {}
for str in string.gmatch(inputstr, "([^" .. sep .. "]+)") do
table.insert(t, str)
end
return t
end
local function trim(x)
local str = x
str = str:gsub("%s+", "")
str = string.gsub(str, "%s+", "")
return str
end
function p.temperament_data(frame)
local subgroup = mysplit(frame.args["subgroup"], ".")
for i = 1, #subgroup do
subgroup[i] = tonumber(subgroup[i])
end
local comma_matrix = mysplit(frame.args["comma_list"], ",")
for i = 1, #comma_matrix do
comma_matrix[i] = rat.parse(comma_matrix[i])
end
comma_matrix = rat_list_to_matrix(subgroup, comma_matrix)
local unparsed_gens = mysplit(frame.args["generators"], ",")
local generators = mysplit(frame.args["generators"], ",")
for i = 1, #generators do
generators[i] = rat.parse(generators[i])
end
generators = rat_list_to_matrix(subgroup, generators)
local mapping = get_reduced_mapping(comma_matrix, generators)
local cte_generator = frame.args["cte_generator"]
local pote_generator = get_pote_generator(subgroup, comma_matrix, generators)
local result = "[[Subgroup]]: " .. frame.args["subgroup"]
result = result .. "\n\n[[Comma list]]: " .. frame.args["comma_list"]
result = result .. "\n\n[[Mapping]]: [⟨"
for i = 1, #mapping do
for j = 1, #mapping[1] do
result = result .. mapping[i][j] .. " "
end
result = result:sub(0,-2) .. "], ⟨"
end
result = result:sub(0,-6) .. "]"
result = result .. "\n\n: mapping generators: "
for i = 1, #unparsed_gens do
result = result .. "~" .. trim(unparsed_gens[i]) .. ", "
end
result = result:sub(0, -3)
if cte_generator ~= "" then
cte_generator = mysplit(cte_generator, ",")
for i = 1, #cte_generator do
cte_generator[i] = tonumber(cte_generator[i])
end
result = result .. "\n\n[[Optimal tuning]]s:\n* [[CTE]]:"
for i = 1, #(cte_generator) do
result = result .. "~" .. trim(unparsed_gens[i]) .. " = "
if subgroup[1] == 2 and i == 1 then
result = result .. "1\\1"
elseif subgroup[1] == 3 and i == 1 then
result = result .. "1\\1edt"
else
result = result .. u._round(cte_generator[i], 7)
end
result = result .. ", "
end
result = result:sub(0,-3)
if subgroup[1] ~= 2 then
result = result .. "\n* [[Lp tuning|POL2]]:"
else
result = result .. "\n* [[POTE]]:"
end
else
if subgroup[1] ~= 2 then
result = result .. "\n\n[[Optimal tuning]] ([[Lp tuning|POL2]]): "
else
result = result .. "\n\n[[Optimal tuning]] ([[POTE]]): "
end
end
for i = 1, #(pote_generator[1]) do
result = result .. "~" .. trim(unparsed_gens[i]) .. " = "
if subgroup[1] == 2 and i == 1 then
result = result .. "1\\1"
elseif subgroup[1] == 3 and i == 1 then
result = result .. "1\\1edt"
else
result = result .. u._round(pote_generator[1][i] * 1200, 7)
end
result = result .. ", "
end
result = result:sub(0,-3)
return result
end
return p