User:Moremajorthanmajor/7L 3s (perfect eleventh-equivalent): Difference between revisions
mNo edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''7L 3s<perfect eleventh>''' (sometimes called '''Bolivar''' or''' Choralic''') refers to a non-octave [[MOS scale]] family with a period of | '''7L 3s<perfect eleventh>''' (sometimes called '''Bolivar''' or''' Choralic''') refers to a non-octave [[MOS scale]] family with a period of a perfect eleventh and which has 7 large and 3 small steps. These scales are the sister of '''[[7L 3s (4/1-equivalent)|diaquadic]]''' with the melodic spacing of [[5L 2s|diatonic scales]]. A pathological trait these scales exhibit is that normalization to [[edo]] collapses the range for the [[bright]] [[generator]] to the octave. | ||
==Modes== | ==Modes== | ||
The modes contain fundamental chords with notes such that they convert a [[wikipedia:Tritone_substitution|tritone substitution]] into a diatonic chord substitution. | The modes contain fundamental chords with notes such that they convert a [[wikipedia:Tritone_substitution|tritone substitution]] into a diatonic chord substitution. | ||
Line 28: | Line 28: | ||
!In L's and s's | !In L's and s's | ||
!# generators up | !# generators up | ||
!Notation of | !Notation of eleventh inverse | ||
!name | !name | ||
!In L's and s's | !In L's and s's | ||
Line 133: | Line 133: | ||
|6L+4s | |6L+4s | ||
|- | |- | ||
| colspan="8" style="text-align:center" |The chromatic 17-note MOS (either [[7L 10s (eleventh equivalent)|7L 10s]], [[10L 7s (eleventh equivalent)|10L 7s]], or | | colspan="8" style="text-align:center" |The chromatic 17-note MOS (either [[7L 10s (perfect eleventh equivalent)|7L 10s]], [[10L 7s (perfect eleventh equivalent)|10L 7s]], or [[17edXI]]) also has the following intervals (from some root): | ||
|- | |- | ||
|11 | |11 | ||
Line 190: | Line 190: | ||
|} | |} | ||
==Scale tree== | ==Scale tree== | ||
The generator range reflects two extremes: one where L = s (3\10), and another where s = 0 (2\7). Between these extremes, there is an infinite continuum of possible generator sizes. By taking freshman sums of the two edges (adding the numerators, then adding the denominators), we can fill in this continuum with compatible ~ed8/3s, increasing in number of tones as we continue filling in the in-betweens. Thus, the smallest in-between ~ed8/3 would be (3+2)\(10+7) = 5\17 – five degrees of | The generator range reflects two extremes: one where L = s (3\10), and another where s = 0 (2\7). Between these extremes, there is an infinite continuum of possible generator sizes. By taking freshman sums of the two edges (adding the numerators, then adding the denominators), we can fill in this continuum with compatible ~ed8/3s, increasing in number of tones as we continue filling in the in-betweens. Thus, the smallest in-between ~ed8/3 would be (3+2)\(10+7) = 5\17 – five degrees of [[17edXI]]: | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
! colspan="8 | ! colspan="8" |Generator | ||
!Cents | !Normalized Cents<ref name=":0">Fractions with repeat period 2 or longer in minutes and seconds</ref> | ||
!L | |||
! | !s | ||
! | !L/s | ||
! | !Comments | ||
! | |||
|- | |- | ||
|7\10|| || || || || | |||
|7\10|| || || || || | |||
| | | | ||
| | | | ||
|514¢17’8” | |514¢17’8”||1||1||1.000|| | ||
|- | |- | ||
| || || || || ||40\57 | | || || || || ||40\57 | ||
| | | | ||
| | | | ||
|510 | |510||6||5||1.200|| | ||
|- | |- | ||
| || || || ||33\47|| | | || || || ||33\47|| | ||
| | | | ||
| | | | ||
|509¢5’27” | |509¢5’27”||5||4||1.250|| | ||
|- | |- | ||
| || || || || ||59\84 | | || || || || ||59\84 | ||
| | | | ||
| | | | ||
|508¢28'34” | |508¢28'34”||9||7||1.286|| | ||
|- | |- | ||
| || || ||26\37|| || | | || || ||26\37|| || | ||
| | | | ||
| | | | ||
|507¢55’23” | |507¢55’23”||4||3||1.333|| | ||
|- | |- | ||
| || || || || ||71\101 | | || || || || ||71\101 | ||
| | | | ||
| | | | ||
|507¢2’32” | |507¢2’32”||11||8||1.375|| | ||
|- | |- | ||
| || || || ||45\64|| | | || || || ||45\64|| | ||
| | | | ||
| | | | ||
|506.{{Overline|6}} | |506.{{Overline|6}}||7||5||1.400|| | ||
|- | |- | ||
| || ||19\27|| || || | | || ||19\27|| || || | ||
| | | | ||
| | | | ||
|505¢15’47” | |505¢15’47”||3||2||1.500||L/s = 3/2 | ||
|- | |- | ||
| || || || ||50\71|| | | || || || ||50\71|| | ||
| | | | ||
| | | | ||
|504 | |504||8||5||1.600|| | ||
|- | |- | ||
| || || ||31\44|| || | | || || ||31\44|| || | ||
| | | | ||
| | | | ||
|503¢13’33” | |503¢13’33”||5||3||1.667|| | ||
|- | |- | ||
| || || || ||43\61|| | | || || || ||43\61|| | ||
| | | | ||
| | | | ||
|502¢18’8” | |502¢18’8”||7||4||1.750|| | ||
|- | |- | ||
| || || || || ||55\78 | | || || || || ||55\78 | ||
| | | | ||
| | | | ||
|501¢49’5” | |501¢49’5”||9||5||1.800|| | ||
|- | |- | ||
| | | | ||
Line 274: | Line 268: | ||
| | | | ||
|501¢29’33” | |501¢29’33” | ||
|11 | |11 | ||
|6 | |6 | ||
Line 290: | Line 282: | ||
|79\112 | |79\112 | ||
|501¢15’57” | |501¢15’57” | ||
|13 | |13 | ||
|7 | |7 | ||
Line 297: | Line 287: | ||
| | | | ||
|- | |- | ||
| ||12\17|| || || || | | ||12\17|| || || || | ||
| | | | ||
| | | | ||
|500 | |500||2||1||2.000||Basic Bolivar | ||
(Generators smaller than this are proper) | (Generators smaller than this are proper) | ||
|- | |- | ||
Line 312: | Line 302: | ||
|77\109 | |77\109 | ||
|498¢42’5” | |498¢42’5” | ||
|13 | |13 | ||
|6 | |6 | ||
Line 328: | Line 316: | ||
| | | | ||
|498¢21’42” | |498¢21’42” | ||
|11 | |11 | ||
|5 | |5 | ||
Line 335: | Line 321: | ||
| | | | ||
|- | |- | ||
| || || || || ||53\75 | | || || || || ||53\75 | ||
| | | | ||
| | | | ||
|498¢6’48” | |498¢6’48”||9||4||2.250|| | ||
|- | |- | ||
| || || || ||41\58|| | | || || || ||41\58|| | ||
| | | | ||
| | | | ||
|497¢33’39” | |497¢33’39”||7||3||2.333|| | ||
|- | |- | ||
| || || || || ||70\99 | | || || || || ||70\99 | ||
| | | | ||
| | | | ||
|497¢8’34” | |497¢8’34”||12||5||2.400|| | ||
|- | |- | ||
| || || ||29\41|| || | | || || ||29\41|| || | ||
| | | | ||
| | | | ||
|496¢33’6” | |496¢33’6”||5||2||2.500|| | ||
|- | |- | ||
| || || || ||46\65|| | | || || || ||46\65|| | ||
| | | | ||
| | | | ||
|495¢39’8” | |495¢39’8”||8||3||2.667|| | ||
|- | |- | ||
| || ||17\24|| || || | | || ||17\24|| || || | ||
| | | | ||
| | | | ||
|494¢7’4” | |494¢7’4”||3||1||3.000||L/s = 3/1 | ||
|- | |- | ||
| | | | ||
Line 374: | Line 360: | ||
| | | | ||
|493¢9’2” | |493¢9’2” | ||
|13 | |13 | ||
|4 | |4 | ||
Line 381: | Line 365: | ||
| | | | ||
|- | |- | ||
| || || || || ||56\79 | | || || || || ||56\79 | ||
| | | | ||
| | | | ||
|492¢51’26” | |492¢51’26”||10||3||3.333|| | ||
|- | |- | ||
| || || || ||39\55|| | | || || || ||39\55|| | ||
| | | | ||
| | | | ||
|492¢18’28” | |492¢18’28”||7||2||3.500|| | ||
|- | |- | ||
| || || || || ||61\86 | | || || || || ||61\86 | ||
| | | | ||
| | | | ||
|491¢48’12” | |491¢48’12”||11||3||3.667|| | ||
|- | |- | ||
| || || ||22\31|| || | | || || ||22\31|| || | ||
| | | | ||
| | | | ||
|490¢54’33” | |490¢54’33”||4||1||4.000|| | ||
|- | |- | ||
| || || || || ||49\69 | | || || || || ||49\69 | ||
| | | | ||
| | | | ||
|489¢47’45” | |489¢47’45”||9||2||4.500|| | ||
|- | |- | ||
| || || || ||27\38|| | | || || || ||27\38|| | ||
| | | | ||
| | | | ||
|488.{{Overline|8}} | |488.{{Overline|8}}||5||1||5.000|| | ||
|- | |- | ||
| || || || || ||32\45 | | || || || || ||32\45 | ||
| | | | ||
| | | | ||
|487.5 | |487.5||6||1||6.000|| | ||
|- | |- | ||
|5\7|| || || || || | |5\7|| || || || || | ||
| | | | ||
| | | | ||
|480 | |480||1||0||→ inf|| | ||
|}The scale produced by stacks of 5\17 is the 12edo diatonic scale. | |}The scale produced by stacks of 5\17 is the 12edo diatonic scale. | ||
Line 426: | Line 410: | ||
You can also build this scale by equally dividing frequency ratio 8:3 which is not a member of an edo or stacking frequency ratio 4:3 which is not a member of an equal division of it within it. | You can also build this scale by equally dividing frequency ratio 8:3 which is not a member of an edo or stacking frequency ratio 4:3 which is not a member of an equal division of it within it. | ||
==Rank-2 temperaments== | ==Rank-2 temperaments== | ||
The '''Bolivar''' rank-2 temperament spells its major tetrad 4:5:6:8 or 14:18:21:28<code>root-3(2g-p)-(2g-p)-(1g)</code> (p = 8/3, g = 2/1) and its minor tetrad 6:7:9:12 or 10:12:15:20 <code>root-2(p-2g)-(2g-p)-(1g)</code> (p = 8/3, g = 2/1). Basic | The '''Bolivar''' rank-2 temperament spells its major tetrad 4:5:6:8 or 14:18:21:28<code>root-3(2g-p)-(2g-p)-(1g)</code> (p = 8/3, g = 2/1) and its minor tetrad 6:7:9:12 or 10:12:15:20 <code>root-2(p-2g)-(2g-p)-(1g)</code> (p = 8/3, g = 2/1). Basic 17ed8/3 fits both interpretations. | ||
==='''Bolivar-Meantone'''=== | ==='''Bolivar-Meantone'''=== | ||
Line 437: | Line 421: | ||
[[Mapping]]: [{{val|1 0 -3}}, {{val|0 1 6}}] | [[Mapping]]: [{{val|1 0 -3}}, {{val|0 1 6}}] | ||
[[Optimal ET sequence]]: | [[Optimal ET sequence]]: 17ed8/3, 27ed8/3, 44ed8/3 | ||
==='''Bolivar-Superpyth'''=== | ==='''Bolivar-Superpyth'''=== | ||
[[Subgroup]]: 8/3.2.7/6 | [[Subgroup]]: 8/3.2.7/6 | ||
Line 447: | Line 431: | ||
[[Mapping]]: [{{val|1 0 2}}, {{val|0 1 -4}}] | [[Mapping]]: [{{val|1 0 2}}, {{val|0 1 -4}}] | ||
[[Optimal ET sequence]]: | [[Optimal ET sequence]]: 17ed8/3, 24ed8/3, 31ed8/3, 38ed8/3 | ||
==7-note subsets== | ==7-note subsets== | ||
If you stop the chain at 7 tones, you have a heptatonic scale of the form [[3L 4s (eleventh equivalent)|3L 4s]]: | If you stop the chain at 7 tones, you have a heptatonic scale of the form [[3L 4s (eleventh equivalent)|3L 4s]]: |
Revision as of 02:33, 19 June 2023
7L 3s<perfect eleventh> (sometimes called Bolivar or Choralic) refers to a non-octave MOS scale family with a period of a perfect eleventh and which has 7 large and 3 small steps. These scales are the sister of diaquadic with the melodic spacing of diatonic scales. A pathological trait these scales exhibit is that normalization to edo collapses the range for the bright generator to the octave.
Modes
The modes contain fundamental chords with notes such that they convert a tritone substitution into a diatonic chord substitution.
- LLLsLLsLLs 9|0 (Lydian ♮11)
- LLsLLLsLLs 8|1 (Major, Ionian)
- LLsLLsLLLs 7|2 (Mixolydian)
- LLsLLsLLsL 6|3 (Mahur)
- LsLLLsLLsL 5|4 (Dorian)
- LsLLsLLLsL 4|5 (Minor, Aeolian)
- LsLLsLLsLL 3|6 (Aeolian b9)
- sLLLsLLsLL 2|7 (Phrygian)
- sLLsLLLsLL 1|8 (Locrian)
- sLLsLLsLLL 0|9 (Locrian b8)
Intervals
The generator (g) will fall between 480 cents (2\5 - two degrees of 5edo) and 514 cents (2\5 - two degrees of 5edo), hence a perfect fourth.
2g, then, will fall between 960 cents (4\5) and 1029 cents (6\7), the range of minor sevenths.
The "large step" will fall between 171 cents (1\7) and 240 cents (1\5), the range of major seconds.
The "small step" will fall between 0 cents and 171 cents, sometimes sounding like a submajor second, and sometimes sounding like a quartertone or smaller microtone.
# generators up | Notation (1/1 = 0) | name | In L's and s's | # generators up | Notation of eleventh inverse | name | In L's and s's |
---|---|---|---|---|---|---|---|
The 10-note MOS has the following intervals (from some root): | |||||||
0 | 0 | perfect unison | 0 | 0 | 0 | perfect eleventh | 7L+3s |
1 | 7 | perfect octave | 5L+2s | -1 | 3 | perfect fourth | 2L+1s |
2 | 4 | just fifth | 3L+1s | -2 | 6 | minor seventh | 4L+2s |
3 | 1 | major second | 1L | -3 | 9v | minor tenth | 6L+3s |
4 | 8 | major ninth | 6L+2s | -4 | 2v | minor third | 1L+1s |
5 | 5 | major sixth | 4L+1s | -5 | 5v | minor sixth | 3L+2s |
6 | 2 | major third | 2L | -6 | 8v | minor ninth | 5L+3s |
7 | 9 | major tenth | 7L+2s | -7 | 1v | minor second | 1s |
8 | 6^ | major seventh | 5L+1s | -8 | 4v | diminished fifth | 2L+2s |
9 | 3^ | augmented fourth | 3L | -9 | 7v | diminished octave | 4L+3s |
10 | 0^ | augmented unison | 1L-1s | -10 | 0v | diminished eleventh | 6L+4s |
The chromatic 17-note MOS (either 7L 10s, 10L 7s, or 17edXI) also has the following intervals (from some root): | |||||||
11 | 7^ | augmented octave | 6L+1s | -11 | 3v | diminished fourth | 1L+2s |
12 | 4^ | augmented fifth | 4L | -12 | 6v | diminished seventh | 3L+3s |
13 | 1^ | augmented second | 2L-1s | -13 | 9w | diminished ninth | 5L+4s |
14 | 8^ | augmented ninth | 8L+1s | -14 | 2w | diminished third | 2s |
15 | 5^ | augmented sixth | 5L | -15 | 5w | diminished sixth | 2L+3s |
16 | 2^ | augmented third | 3L-1s | -16 | 8w | diminished ninth | 4L+4s |
Scale tree
The generator range reflects two extremes: one where L = s (3\10), and another where s = 0 (2\7). Between these extremes, there is an infinite continuum of possible generator sizes. By taking freshman sums of the two edges (adding the numerators, then adding the denominators), we can fill in this continuum with compatible ~ed8/3s, increasing in number of tones as we continue filling in the in-betweens. Thus, the smallest in-between ~ed8/3 would be (3+2)\(10+7) = 5\17 – five degrees of 17edXI:
Generator | Normalized Cents[1] | L | s | L/s | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
7\10 | 514¢17’8” | 1 | 1 | 1.000 | ||||||||
40\57 | 510 | 6 | 5 | 1.200 | ||||||||
33\47 | 509¢5’27” | 5 | 4 | 1.250 | ||||||||
59\84 | 508¢28'34” | 9 | 7 | 1.286 | ||||||||
26\37 | 507¢55’23” | 4 | 3 | 1.333 | ||||||||
71\101 | 507¢2’32” | 11 | 8 | 1.375 | ||||||||
45\64 | 506.6 | 7 | 5 | 1.400 | ||||||||
19\27 | 505¢15’47” | 3 | 2 | 1.500 | L/s = 3/2 | |||||||
50\71 | 504 | 8 | 5 | 1.600 | ||||||||
31\44 | 503¢13’33” | 5 | 3 | 1.667 | ||||||||
43\61 | 502¢18’8” | 7 | 4 | 1.750 | ||||||||
55\78 | 501¢49’5” | 9 | 5 | 1.800 | ||||||||
67\95 | 501¢29’33” | 11 | 6 | 1.833 | ||||||||
79\112 | 501¢15’57” | 13 | 7 | 1.857 | ||||||||
12\17 | 500 | 2 | 1 | 2.000 | Basic Bolivar
(Generators smaller than this are proper) | |||||||
77\109 | 498¢42’5” | 13 | 6 | 2.167 | ||||||||
65\92 | 498¢21’42” | 11 | 5 | 2.200 | ||||||||
53\75 | 498¢6’48” | 9 | 4 | 2.250 | ||||||||
41\58 | 497¢33’39” | 7 | 3 | 2.333 | ||||||||
70\99 | 497¢8’34” | 12 | 5 | 2.400 | ||||||||
29\41 | 496¢33’6” | 5 | 2 | 2.500 | ||||||||
46\65 | 495¢39’8” | 8 | 3 | 2.667 | ||||||||
17\24 | 494¢7’4” | 3 | 1 | 3.000 | L/s = 3/1 | |||||||
73\103 | 493¢9’2” | 13 | 4 | 3.250 | ||||||||
56\79 | 492¢51’26” | 10 | 3 | 3.333 | ||||||||
39\55 | 492¢18’28” | 7 | 2 | 3.500 | ||||||||
61\86 | 491¢48’12” | 11 | 3 | 3.667 | ||||||||
22\31 | 490¢54’33” | 4 | 1 | 4.000 | ||||||||
49\69 | 489¢47’45” | 9 | 2 | 4.500 | ||||||||
27\38 | 488.8 | 5 | 1 | 5.000 | ||||||||
32\45 | 487.5 | 6 | 1 | 6.000 | ||||||||
5\7 | 480 | 1 | 0 | → inf |
The scale produced by stacks of 5\17 is the 12edo diatonic scale.
Other compatible ~ed8/3s include: ~37ed8/3, ~27ed8/3, ~44ed8/3, ~41ed8/3, ~24ed8/3, ~31ed8/3.
You can also build this scale by equally dividing frequency ratio 8:3 which is not a member of an edo or stacking frequency ratio 4:3 which is not a member of an equal division of it within it.
Rank-2 temperaments
The Bolivar rank-2 temperament spells its major tetrad 4:5:6:8 or 14:18:21:28root-3(2g-p)-(2g-p)-(1g)
(p = 8/3, g = 2/1) and its minor tetrad 6:7:9:12 or 10:12:15:20 root-2(p-2g)-(2g-p)-(1g)
(p = 8/3, g = 2/1). Basic 17ed8/3 fits both interpretations.
Bolivar-Meantone
Subgroup: 8/3.2.5/4
POL2 generator: ~2/1 = 1196.3254
Mapping: [⟨1 0 -3], ⟨0 1 6]]
Optimal ET sequence: 17ed8/3, 27ed8/3, 44ed8/3
Bolivar-Superpyth
Subgroup: 8/3.2.7/6
POL2 generator: ~2/1 = 1206.6167
Mapping: [⟨1 0 2], ⟨0 1 -4]]
Optimal ET sequence: 17ed8/3, 24ed8/3, 31ed8/3, 38ed8/3
7-note subsets
If you stop the chain at 7 tones, you have a heptatonic scale of the form 3L 4s:
L s s L s L s
The large steps here consist of L+s of the 10-tone system, and the small step is the same as L.
Tetrachordal structure
Due to the frequency of perfect fourths and fifths in this scale, it can also be analyzed as a tetrachordal scale.
See also
- ↑ Fractions with repeat period 2 or longer in minutes and seconds