Lumatone mapping for 26edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Keenan Pepper (talk | contribs)
Created page with "There are many conceivable ways to map 26edo onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean. {{Lumatone..."
 
Yourmusic Productions (talk | contribs)
Add alternative mappings, category.
Line 1: Line 1:
There are many conceivable ways to map [[26edo]] onto the [[Lumatone]] keyboard. Only one, however, agrees with the [[Standard Lumatone mapping for Pythagorean]].
There are many conceivable ways to map [[26edo]] onto the [[Lumatone]] keyboard. Only one, however, agrees with the [[Standard Lumatone mapping for Pythagorean]].


{{Lumatone EDO mapping|n=26|start=-4|xstep=4|ystep=-1}}


{{Lumatone EDO mapping|n=26|start=-4|xstep=4|ystep=-1}}
However, as 26edo's 5-limit performance is not it's best feature, other options are probably preferable. If you want to maximise the playable range and put the best consonances close to each other, the [[orgone]] mapping is the clear winner.
{{Lumatone EDO mapping|n=26|start=17|xstep=7|ystep=-2}}
 
The [[Lemba]] and [[Hendec]] mappings also work particularly well in 26edo.
{{Lumatone EDO mapping|n=26|start=25|xstep=5|ystep=-2}}
{{Lumatone EDO mapping|n=26|start=20|xstep=4|ystep=1}}


[[Category:Lumatone mappings]]
[[Category:Lumatone mappings]] [[Category:26edo]]

Revision as of 17:41, 29 April 2023

There are many conceivable ways to map 26edo onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

22
0
25
3
7
11
15
24
2
6
10
14
18
22
0
1
5
9
13
17
21
25
3
7
11
15
0
4
8
12
16
20
24
2
6
10
14
18
22
0
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
22
0
4
8
12
16
20
24
2
6
10
14
18
22
11
15
19
23
1
5
9
13
17
21
25
22
0
4
8
12
16
20
24
11
15
19
23
1
22
0

However, as 26edo's 5-limit performance is not it's best feature, other options are probably preferable. If you want to maximise the playable range and put the best consonances close to each other, the orgone mapping is the clear winner.

17
24
22
3
10
17
24
20
1
8
15
22
3
10
17
25
6
13
20
1
8
15
22
3
10
17
23
4
11
18
25
6
13
20
1
8
15
22
3
10
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
10
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
13
20
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
11
18
25
6
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
16
23
4
1
8
15
22
3
10
17
24
5
12
19
0
7
14
21
2
9
20
1
8
15
22
3
10
17
24
5
12
19
0
7
20
1
8
15
22
3
10
17
24
5
12
13
20
1
8
15
22
3
10
13
20
1
8
15
6
13

The Lemba and Hendec mappings also work particularly well in 26edo.

25
4
2
7
12
17
22
0
5
10
15
20
25
4
9
3
8
13
18
23
2
7
12
17
22
1
1
6
11
16
21
0
5
10
15
20
25
4
9
14
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
11
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
24
11
16
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
1
6
11
16
24
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
16
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
2
7
12
17
22
3
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
21
0
5
10
15
20
25
4
9
14
19
24
3
8
13
18
23
8
13
18
23
2
7
12
17
22
1
6
11
16
21
0
5
10
15
20
25
4
9
14
19
24
13
18
23
2
7
12
17
22
5
10
15
20
25
18
23
20
24
25
3
7
11
15
0
4
8
12
16
20
24
2
5
9
13
17
21
25
3
7
11
15
19
6
10
14
18
22
0
4
8
12
16
20
24
2
6
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
14
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
19
23
1
5
14
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
20
24
2
6
10
5
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
25
3
7
11
15
18
22
0
4
8
12
16
20
24
2
6
10
14
18
22
0
4
8
12
16
9
13
17
21
25
3
7
11
15
19
23
1
5
9
13
17
21
22
0
4
8
12
16
20
24
2
6
10
14
18
22
13
17
21
25
3
7
11
15
19
23
1
0
4
8
12
16
20
24
2
17
21
25
3
7
4
8