Template:Harmonics in equal/doc: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Default number of columns is 10 now
Update
Line 3: Line 3:


=== Usage ===
=== Usage ===
==== Simple ====
==== Simple ====


Line 9: Line 8:


<syntaxhighlight lang="text">
<syntaxhighlight lang="text">
{{harmonics in equal|<EDO number>}}
{{Harmonics in equal|<EDO number>}}
</syntaxhighlight>
</syntaxhighlight>


Line 15: Line 14:


<syntaxhighlight lang="text">
<syntaxhighlight lang="text">
{{harmonics in equal|<steps>|<numerator>|<denominator>}}
{{Harmonics in equal|<steps>|<numerator>|<denominator>}}
</syntaxhighlight>
</syntaxhighlight>


Line 22: Line 21:
==== Advanced ====
==== Advanced ====


The template takes up to 8 arguments:
The template takes up to 9 arguments:


<syntaxhighlight lang="text">
<syntaxhighlight lang="text">
{{harmonics in equal
{{Harmonics in equal
| steps = <number of steps>
| steps = <number of steps>
| num = <numerator>
| num = <numerator>
Line 34: Line 33:
| title = <your title>
| title = <your title>
| intervals = <interval list name>
| intervals = <interval list name>
| collapsed = <true/false>
}}
}}
</syntaxhighlight>
</syntaxhighlight>
Line 53: Line 53:
; intervals
; intervals
: Can be <code>prime</code> for primes, <code>odd</code> for odd harmonics and <code>integer</code> for integer harmonics. By default, edos get primes if they are consistent for the odd harmonics up to 21, otherwise they get odds. Everything that is not an edo gets integers.
: Can be <code>prime</code> for primes, <code>odd</code> for odd harmonics and <code>integer</code> for integer harmonics. By default, edos get primes if they are consistent for the odd harmonics up to 21, otherwise they get odds. Everything that is not an edo gets integers.
; collapsed
: <code>true</code> or <code>false</code> to collapse the table. Default: false.


=== Examples ===
=== Examples ===
Line 61: Line 63:


<syntaxhighlight lang="text">
<syntaxhighlight lang="text">
{{harmonics in equal|31}}
{{Harmonics in equal|31}}
</syntaxhighlight>
</syntaxhighlight>
{{harmonics in equal|31}}
{{Harmonics in equal|31}}


For tritave or other integer divisions, two arguments is enough:
For tritave or other integer divisions, two arguments is enough:
<syntaxhighlight lang="text">
<syntaxhighlight lang="text">
{{harmonics in equal|13|3}}
{{Harmonics in equal|13|3}}
</syntaxhighlight>
</syntaxhighlight>
{{harmonics in equal|13|3}}
{{Harmonics in equal|13|3}}


In the most general case, we can input the number of steps, numerator and denominator.
In the most general case, we can input the number of steps, numerator and denominator.


<syntaxhighlight lang="text">
<syntaxhighlight lang="text">
{{harmonics in equal|15|7|3}}
{{Harmonics in equal|15|7|3}}
</syntaxhighlight>
</syntaxhighlight>
{{harmonics in equal|15|7|3}}
{{Harmonics in equal|15|7|3}}


==== Advanced ====
==== Advanced ====
Line 83: Line 85:


<syntaxhighlight lang="text">
<syntaxhighlight lang="text">
{{harmonics in equal|13|3|columns=11|start=2|title=Primes in [[13edt]]|intervals=prime}}
{{Harmonics in equal|13|3|columns=11|start=2|title=Primes in [[13edt]]|intervals=prime}}
</syntaxhighlight>
</syntaxhighlight>
{{harmonics in equal|13|3|columns=11|start=2|title=Primes in [[13edt]]|intervals=prime}}
{{Harmonics in equal|13|3|columns=11|start=2|title=Primes in [[13edt]]|intervals=prime}}


For large divisions ([[313edo]] in this example) the absolute error gets very small. The default precision gets calculated automatically, but if we want to increase it even further, we can set <code>prec</code> to a higher value. This is not recommended generally.
For large divisions ([[313edo]] in this example) the absolute error gets very small. The default precision gets calculated automatically, but if we want to increase it even further, we can set <code>prec</code> to a higher value. This is not recommended generally.


<syntaxhighlight lang="text">
<syntaxhighlight lang="text">
{{harmonics in equal|313|columns=9|start=2}}
{{Harmonics in equal|313|columns=9|start=2}}
{{harmonics in equal|313|columns=9|start=2|prec=5|title=Same with prec=5}}
{{Harmonics in equal|313|columns=9|start=2|prec=5|title=Same with prec=5}}
</syntaxhighlight>
</syntaxhighlight>
{{harmonics in equal|313|columns=9|start=2}}
{{Harmonics in equal|313|columns=9|start=2}}
{{harmonics in equal|313|columns=9|start=2|prec=5|title=Same with prec=5}}
{{Harmonics in equal|313|columns=9|start=2|prec=5|title=Same with prec=5}}

Revision as of 11:03, 7 April 2023

This template generates a table for prime approximations in equal-step tunings.

Usage

Simple

For divisions of the octave (edo), you can use one unnamed argument:

{{Harmonics in equal|<EDO number>}}

For other divisions, you can use two or three unnamed arguments:

{{Harmonics in equal|<steps>|<numerator>|<denominator>}}

By default, the titles for divisions of 2/1, 3/1 and 3/2 will be displayed as 'edo', 'edt' and 'edf' respectively. When the denominator is 1, it will not be displayed. Edos get primes if they are consistent for the odd harmonics up to 21, otherwise they get odds. Everything that is not an edo gets integers.

Advanced

The template takes up to 9 arguments:

{{Harmonics in equal
| steps = <number of steps>
| num = <numerator>
| denom = <denominator>
| columns = <column count>
| start = <start column>
| prec = <decimals of abs error>
| title = <your title>
| intervals = <interval list name>
| collapsed = <true/false>
}}
steps
Number of steps. This parameter can also be given without the parameter name. Default: 12.
num
Numerator of the interval that is divided equally. Can be used without parameter name. Default: 2.
denom
Denominator of the interval that is divided equally. Can be used without parameter name. Default: 1.
columns
number of intervals to include. Default: 10.
start
Default is 1 (which means the prime 2), set to 2 to skip the octave.
prec
Precision of absolute error (digits after the decimal point), default is estimated according to the step size.
title
Default is: "Approximations of harmonics in name". By default, the names for divisions of 2/1, 3/1 and 3/2 will be displayed as 'edo', 'edt' and 'edf' respectively. When the denominator is 1, it will not be displayed.
intervals
Can be prime for primes, odd for odd harmonics and integer for integer harmonics. By default, edos get primes if they are consistent for the odd harmonics up to 21, otherwise they get odds. Everything that is not an edo gets integers.
collapsed
true or false to collapse the table. Default: false.

Examples

Basic

For edos it is sufficient to only input the number of steps:

{{Harmonics in equal|31}}
Approximation of prime harmonics in 31edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0 -5.2 +0.8 -1.1 -9.4 +11.1 +11.2 +12.2 -8.9 +15.6 +16.3
Relative (%) +0.0 -13.4 +2.0 -2.8 -24.2 +28.6 +28.9 +31.4 -23.0 +40.3 +42.0
Steps
(reduced)
31
(0)
49
(18)
72
(10)
87
(25)
107
(14)
115
(22)
127
(3)
132
(8)
140
(16)
151
(27)
154
(30)

For tritave or other integer divisions, two arguments is enough:

{{Harmonics in equal|13|3}}
Approximation of harmonics in 13edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -29.6 +0.0 -59.1 -6.5 -29.6 -3.8 +57.6 +0.0 -36.1 -54.8 -59.1
Relative (%) -20.2 +0.0 -40.4 -4.5 -20.2 -2.6 +39.4 +0.0 -24.7 -37.5 -40.4
Steps
(reduced)
8
(8)
13
(0)
16
(3)
19
(6)
21
(8)
23
(10)
25
(12)
26
(0)
27
(1)
28
(2)
29
(3)

In the most general case, we can input the number of steps, numerator and denominator.

{{Harmonics in equal|15|7|3}}
Approximation of harmonics in 15ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -26.5 -43.9 +44.8 -48.2 +27.4 -43.9 +18.3 +10.0 +23.1 -44.1 +0.9
Relative (%) -27.1 -44.9 +45.8 -49.2 +28.0 -44.9 +18.7 +10.2 +23.7 -45.1 +0.9
Steps
(reduced)
12
(12)
19
(4)
25
(10)
28
(13)
32
(2)
34
(4)
37
(7)
39
(9)
41
(11)
42
(12)
44
(14)

Advanced

Sometimes you want to see more or skip some lower columns and have to adjust the title:

{{Harmonics in equal|13|3|columns=11|start=2|title=Primes in [[13edt]]|intervals=prime}}
Primes in 13edt
Harmonic 3 5 7 11 13 17 19 23 29 31 37
Error Absolute (¢) +0.0 -6.5 -3.8 -54.8 -51.4 +69.4 +23.1 -15.0 +22.6 +53.4 +39.7
Relative (%) +0.0 -4.5 -2.6 -37.5 -35.1 +47.4 +15.8 -10.3 +15.4 +36.5 +27.2
Steps
(reduced)
13
(0)
19
(6)
23
(10)
28
(2)
30
(4)
34
(8)
35
(9)
37
(11)
40
(1)
41
(2)
43
(4)

For large divisions (313edo in this example) the absolute error gets very small. The default precision gets calculated automatically, but if we want to increase it even further, we can set prec to a higher value. This is not recommended generally.

{{Harmonics in equal|313|columns=9|start=2}}
{{Harmonics in equal|313|columns=9|start=2|prec=5|title=Same with prec=5}}
Approximation of prime harmonics in 313edo
Harmonic 3 5 7 11 13 17 19 23 29
Error Absolute (¢) -0.36 +0.91 +1.14 +0.76 -0.91 -1.44 +1.53 +0.48 +1.73
Relative (%) -9.3 +23.7 +29.8 +19.8 -23.8 -37.6 +39.9 +12.5 +45.2
Steps
(reduced)
496
(183)
727
(101)
879
(253)
1083
(144)
1158
(219)
1279
(27)
1330
(78)
1416
(164)
1521
(269)
Same with prec=5
Harmonic 3 5 7 11 13 17 19 23 29
Error Absolute (¢) -0.35756 +0.90673 +1.14214 +0.75873 -0.91105 -1.44103 +1.52852 +0.47965 +1.73271
Relative (%) -9.3 +23.7 +29.8 +19.8 -23.8 -37.6 +39.9 +12.5 +45.2
Steps
(reduced)
496
(183)
727
(101)
879
(253)
1083
(144)
1158
(219)
1279
(27)
1330
(78)
1416
(164)
1521
(269)