2619edo: Difference between revisions
Jump to navigation
Jump to search
Created page with "{{EDO intro|2619}}" |
No edit summary |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{EDO intro|2619}} | {{EDO intro|2619}} | ||
==Theory== | |||
2619edo is consistent in the 33-odd-limit and it is an excellent 2.3.17.29.31 subgroup tuning. | |||
===Harmonics=== | |||
{{harmonics in equal|2619}} |
Revision as of 17:36, 19 January 2023
← 2618edo | 2619edo | 2620edo → |
Theory
2619edo is consistent in the 33-odd-limit and it is an excellent 2.3.17.29.31 subgroup tuning.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.008 | -0.059 | -0.212 | -0.115 | -0.207 | -0.030 | -0.148 | -0.096 | -0.024 | -0.018 |
Relative (%) | +0.0 | -1.7 | -13.0 | -46.3 | -25.1 | -45.2 | -6.5 | -32.2 | -20.9 | -5.2 | -4.0 | |
Steps (reduced) |
2619 (0) |
4151 (1532) |
6081 (843) |
7352 (2114) |
9060 (1203) |
9691 (1834) |
10705 (229) |
11125 (649) |
11847 (1371) |
12723 (2247) |
12975 (2499) |