User:Ganaram inukshuk/Sandbox: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Ganaram inukshuk (talk | contribs)
m Interval and degree tables: Adding sorting requires an additional edit
Ganaram inukshuk (talk | contribs)
Interval and degree tables: Test with merged cells and sorting
Line 17: Line 17:
== Interval and degree tables ==
== Interval and degree tables ==
{| class="wikitable sortable" style="text-align: left;"
{| class="wikitable sortable" style="text-align: left;"
|+ <!-- caption -->
|+<!-- caption -->Intervals of 2L 5s
|-
|-
! Mode    !! UDP                  !! align="right"|  Rotational order !! align="right"|  mosunison !! 1-mosstep  !! 2-mosstep  !! 3-mosstep  !! 4-mosstep  !! 5-mosstep  !! 6-mosstep  !! mosoctave
! Mode    !! UDP                  !! align="right"|  Rotational order !! align="right"|  mosunison !! 1-mosstep  !! 2-mosstep  !! 3-mosstep  !! 4-mosstep  !! 5-mosstep  !! 6-mosstep  !! mosoctave
Line 38: Line 38:


{| class="wikitable sortable" style="text-align: left;"
{| class="wikitable sortable" style="text-align: left;"
|+ <!-- caption -->
|+Degrees of 2L 5s
|-
|-
! Mode    !! UDP                  !! align="right"|  Rotational order !! 0-mosdegree  !! 1-mosdegree  !! 2-mosdegree  !! 3-mosdegree  !! 4-mosdegree  !! 5-mosdegree  !! 6-mosdegree  !! 7-mosdegree
! Mode    !! UDP                  !! align="right"|  Rotational order !! 0-mosdegree  !! 1-mosdegree  !! 2-mosdegree  !! 3-mosdegree  !! 4-mosdegree  !! 5-mosdegree  !! 6-mosdegree  !! 7-mosdegree
Line 55: Line 55:
|-
|-
| sssLssL || 0<nowiki>|</nowiki>6 || align="right"|                  4 || perfect      || minor        || minor        || diminished    || perfect      || minor        || minor        || perfect
| sssLssL || 0<nowiki>|</nowiki>6 || align="right"|                  4 || perfect      || minor        || minor        || diminished    || perfect      || minor        || minor        || perfect
|}
{| class="wikitable sortable" style="text-align: left;"
|+Degrees of 2L 5s (with merged cells)
|-
! Mode !! UDP !! align="right" | Rotational order !! 0-mosdegree !! 1-mosdegree !! 2-mosdegree !! 3-mosdegree !! 4-mosdegree !! 5-mosdegree !! 6-mosdegree !! 7-mosdegree
|-
| LssLsss || 6<nowiki>|</nowiki>0 || align="right" | 0 || rowspan="7" | perfect || rowspan="2" | major || rowspan="4" | major || rowspan="6" | perfect || augmented || rowspan="3" | major || rowspan="5" | major || perfect
|-
| LsssLss || 5<nowiki>|</nowiki>1 || align="right" | 3 || rowspan="6" | perfect || perfect
|-
| sLssLss || 4<nowiki>|</nowiki>2 || align="right" | 6 || rowspan="5" | minor || perfect
|-
| sLsssLs || 3<nowiki>|</nowiki>3 || align="right" | 2 || rowspan="4" | minor || perfect
|-
| ssLssLs || 2<nowiki>|</nowiki>4 || align="right" | 5 || rowspan="3" | minor || perfect
|-
| ssLsssL || 1<nowiki>|</nowiki>5 || align="right" | 1 || rowspan="2" | minor || perfect
|-
| sssLssL || 0<nowiki>|</nowiki>6 || align="right" | 4 || diminished || perfect
|}
|}

Revision as of 07:16, 16 August 2022

This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)

Math symbols test

Isolated symbols

[math]\displaystyle{ T := [ t_1, t_2, ..., t_m ] }[/math] [math]\displaystyle{ S := [ s_1, s_2, ..., s_m ] }[/math] [math]\displaystyle{ P := [ p_1, p_2, ..., p_n ] }[/math]

Sample text

Pulled from muddle page.

Let the target scale T be a sequence of steps [ t1, t2, t3, ... , tm ], the parent scale P be a sequence of steps [ p1, p2, p3, ... , pn ], and the resulting muddle scale S be a sequence of steps [ s1, s2, s3, ... , sm ]. Note that the number of steps in P must be equal to the sum of all ti from T. Also note that both ti and pi are both numeric values, as with si.

The first step s1 of the muddle scale is the sum of the first t1 steps from P, the next step s2 is the sum of the next t2 steps after that (after the previous t1 steps), the next step s3 is the sum of the next t3 steps after that (after the previous t1+t2 steps), and so on, where the last step sm is the sum of the last tm steps from P. For example, if s1 is made from the first 3 steps of P (p1, p2, and p3), then the next step p2 is the sum of the next t2 steps after p3, meaning the sum starts at (and includes) p4.

Interval and degree tables

Intervals of 2L 5s
Mode UDP Rotational order mosunison 1-mosstep 2-mosstep 3-mosstep 4-mosstep 5-mosstep 6-mosstep mosoctave
LssLsss 6|0 0 0 L L+s L+2s 2L+2s 2L+3s 2L+4s 2L+5s
LsssLss 5|1 3 0 L L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLssLss 4|2 6 0 s L+s L+2s L+3s 2L+3s 2L+4s 2L+5s
sLsssLs 3|3 2 0 s L+s L+2s L+3s L+4s 2L+4s 2L+5s
ssLssLs 2|4 5 0 s 2s L+2s L+3s L+4s 2L+4s 2L+5s
ssLsssL 1|5 1 0 s 2s L+2s L+3s L+4s L+5s 2L+5s
sssLssL 0|6 4 0 s 2s 3s L+3s L+4s L+5s 2L+5s


Degrees of 2L 5s
Mode UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss 6|0 0 perfect major major perfect augmented major major perfect
LsssLss 5|1 3 perfect major major perfect perfect major major perfect
sLssLss 4|2 6 perfect minor major perfect perfect major major perfect
sLsssLs 3|3 2 perfect minor major perfect perfect minor major perfect
ssLssLs 2|4 5 perfect minor minor perfect perfect minor major perfect
ssLsssL 1|5 1 perfect minor minor perfect perfect minor minor perfect
sssLssL 0|6 4 perfect minor minor diminished perfect minor minor perfect
Degrees of 2L 5s (with merged cells)
Mode UDP Rotational order 0-mosdegree 1-mosdegree 2-mosdegree 3-mosdegree 4-mosdegree 5-mosdegree 6-mosdegree 7-mosdegree
LssLsss 6|0 0 perfect major major perfect augmented major major perfect
LsssLss 5|1 3 perfect perfect
sLssLss 4|2 6 minor perfect
sLsssLs 3|3 2 minor perfect
ssLssLs 2|4 5 minor perfect
ssLsssL 1|5 1 minor perfect
sssLssL 0|6 4 diminished perfect