Height: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
+cat, main article shown on top of the category pages
Xenwolf (talk | contribs)
Examples of Height Functions:: simplified wiki markup corrected spelling of height in linked articles
Line 29: Line 29:


{| class="wikitable"
{| class="wikitable"
! Name
! Type
! H(n/d)
! H(q)
! H(q) simplified by equivalence relation
|-
|-
| | <u>Name:</u>
| [[Benedetti height]] <br> (or [[Tenney height]])
| | <u>Type:</u>
| Height
| | <u>H(n/d):</u>
| <math>n d</math>
| | <u>H(q):</u>
| <math>2^{\large{\|q\|_{T1}}}</math>
| | <u>H(q) simplified by equivalence relation:</u>
| <math>\|q\|_{T1}</math>
|-
|-
| | [[Benedetti_height|Benedetti height]]
| [[Wilson height]]
 
| Height
(or [[Tenney_Height|Tenney Height]])
| <math>\text{sopf}(n d)</math>
| | Height
| <math>2^{\large{\text{sopf}(n d)}}</math>
| | <math>n d</math>
| <math>\text{sopf}(q)</math>
| | <math>2^{\large{\|q\|_{T1}}}</math>
| | <math>\|q\|_{T1}</math>
|-
|-
| | Wilson Height
| Weil height
| | Height
| Height
| | <math>\text{sopf}(n d)</math>
| <math>\max \left( {n , d} \right)</math>
| | <math>2^{\large{\text{sopf}(n d)}}</math>
| <math>2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}</math>
| | <math>\text{sopf}(q)</math>
| <math>\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid</math>
|-
|-
| | Weil Height
| Arithmetic height
| | Height
| Height
| | <math>\max \left( {n , d} \right)</math>
| <math>n + d</math>
| | <math>2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}</math>
| <math>\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| | <math>\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid</math>
| <math>\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</math>
|-
|-
| | Arithmetic Height
| Harmonic height
| | Height
| Semi-Height
| | <math>n + d</math>
| <math>\dfrac {n d} {n + d}</math>
| | <math>\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| <math>\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| | <math>\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</math>
| <math>\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)</math>
|-
|-
| | Harmonic Height
| [[Kees height]]
| | Semi-Height
| Semi-Height
| | <math>\dfrac {n d} {n + d}</math>
| <math>\max \left( {2^{-v_2 \left( {n} \right)} n, 2^{-v_2 \left( {d} \right)} d} \right)</math>
| | <math>\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| <math>2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}</math>
| | <math>\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)</math>
| <math>\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</math>
|-
| | [[Kees_Height|Kees Height]]
| | Semi-Height
| | <math>\max \left( {2^{-v_2 \left( {n} \right)} n ,
2^{-v_2 \left( {d} \right)} d} \right)</math>
| | <math>2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}</math>
| | <math>\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</math>
|}
|}


Line 79: Line 75:


The function <math>\text{sopf}(nd)</math> is the [http://mathworld.wolfram.com/SumofPrimeFactors.html "sum of prime factors"] of n*d. Equivalently, this is the L1 norm on monzos, but where each prime is weighted by "p" rather than "log(p)". This is called "Wilson Complexity" in John Chalmers "Division of the Tetrachord."
The function <math>\text{sopf}(nd)</math> is the [http://mathworld.wolfram.com/SumofPrimeFactors.html "sum of prime factors"] of n*d. Equivalently, this is the L1 norm on monzos, but where each prime is weighted by "p" rather than "log(p)". This is called "Wilson Complexity" in John Chalmers "Division of the Tetrachord."


Some useful identities:
Some useful identities:
* <math>n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}</math>
* <math>d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}</math>
* <math>n d = 2^{\|q\|_{T1}}</math>


<math>n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}</math>
Height functions can also be put on the points of [http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html projective varieties]. Since [[abstract regular temperament]]s can be identified with rational points on [http://en.wikipedia.org/wiki/Grassmannian Grassmann varieties], complexity measures of regular temperaments are also height functions.
 
<math>d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}</math>
 
<math>n d = 2^{\|q\|_{T1}}</math>
 
Height functions can also be put on the points of [http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html projective varieties]. Since [[Abstract_regular_temperament|abstract regular temperaments]] can be identified with rational points on [http://en.wikipedia.org/wiki/Grassmannian Grassmann varieties], complexity measures of regular temperaments are also height functions.


[[Category:Theory]]
[[Category:Theory]]

Revision as of 07:39, 4 June 2020

Definition:

A height is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.

A height function H(q) on the positive rationals q should fulfill the following criteria:

  1. Given any constant C, there are finitely many elements q such that H(q) ≤ C.
  2. H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.
  3. H(q) = H(1) iff q = 1.
  4. H(q) = H(1/q)
  5. H(q^n) ≥ H(q) for any non-negative integer n

If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:

[math]\displaystyle{ H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right) }[/math]

A semi-height is a function which does not obey criterion #3 above, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:

[math]\displaystyle{ 2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q }[/math]

Or equivalently, if n has any integer solutions:

[math]\displaystyle{ p = 2^n q }[/math]

If the above condition is met, we may then establish the following equivalence relation:

[math]\displaystyle{ p \equiv q }[/math]

By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.

Examples of Height Functions:

Name Type H(n/d) H(q) H(q) simplified by equivalence relation
Benedetti height
(or Tenney height)
Height [math]\displaystyle{ n d }[/math] [math]\displaystyle{ 2^{\large{\|q\|_{T1}}} }[/math] [math]\displaystyle{ \|q\|_{T1} }[/math]
Wilson height Height [math]\displaystyle{ \text{sopf}(n d) }[/math] [math]\displaystyle{ 2^{\large{\text{sopf}(n d)}} }[/math] [math]\displaystyle{ \text{sopf}(q) }[/math]
Weil height Height [math]\displaystyle{ \max \left( {n , d} \right) }[/math] [math]\displaystyle{ 2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}} }[/math] [math]\displaystyle{ \|q\|_{T1} + \mid \log_2(\mid q \mid)\mid }[/math]
Arithmetic height Height [math]\displaystyle{ n + d }[/math] [math]\displaystyle{ \dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} }[/math] [math]\displaystyle{ \|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right) }[/math]
Harmonic height Semi-Height [math]\displaystyle{ \dfrac {n d} {n + d} }[/math] [math]\displaystyle{ \dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}} }[/math] [math]\displaystyle{ \|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right) }[/math]
Kees height Semi-Height [math]\displaystyle{ \max \left( {2^{-v_2 \left( {n} \right)} n, 2^{-v_2 \left( {d} \right)} d} \right) }[/math] [math]\displaystyle{ 2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}} }[/math] [math]\displaystyle{ \|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) | }[/math]

Where ||q||T1 is the tenney norm of q in monzo form, and vp(x) is the p-adic valuation of x.

The function [math]\displaystyle{ \text{sopf}(nd) }[/math] is the "sum of prime factors" of n*d. Equivalently, this is the L1 norm on monzos, but where each prime is weighted by "p" rather than "log(p)". This is called "Wilson Complexity" in John Chalmers "Division of the Tetrachord."

Some useful identities:

  • [math]\displaystyle{ n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}} }[/math]
  • [math]\displaystyle{ d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}} }[/math]
  • [math]\displaystyle{ n d = 2^{\|q\|_{T1}} }[/math]

Height functions can also be put on the points of projective varieties. Since abstract regular temperaments can be identified with rational points on Grassmann varieties, complexity measures of regular temperaments are also height functions.