57edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Jkarimak (talk | contribs)
Intervals: Removed pions column
Jkarimak (talk | contribs)
Line 20: Line 20:
|-
|-
| style="text-align:center;" | 0
| style="text-align:center;" | 0
|0.0000
| style="text-align:right;" | 0.0000
|0
|0
|-
|-

Revision as of 13:22, 12 December 2019

57 tone equal temperament

57edo divides the octave into 57 parts of size 21.053. It can be used to tune mothra temperament, and is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup. One way to describe 57 is that it has a 5-limit part consisting of three versions of 19, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the 19-limit 46&57 temperament Heinz.

5-limit commas: 81/80, 3125/3072

7-limit commas: 81/80, 3125/3072, 1029/1024

11-limit commas: 99/98, 385/384, 441/440, 625/616

Intervals

Degree Size
Cents 7mus
0 0.0000 0
1 21.0526 26.9474 (1A.F28716)
2 42.1053 53.8947 (35.E50E16)
3 63.1579 80.8421 (50.D79416)
4 84.2105 107.7895 (6B.CA1B16)
5 105.2632 134.7368 (86.BCA216)
6 126.3158 161.6842 (A1.AF2916)
7 147.3684 188.6316 (BC.A1AF16)
8 168.42105 215.57895 (D7.943616)
9 189.4737 242.5263 (F2.86BD16)
10 210.5263 269.4737 (10D.794316)
11 231.57895 296.42105 (128.6BCA16)
12 252.6316 323.3684 (143.5E5116)
13 273.6842 350.3158 (15E.50D716)
14 294.7368 377.2632 (17B.435E16)
15 315.7895 404.2105 (194.35E516)
16 336.8421 431.1579 (1AF.286C16)
17 357.8947 458.1053 (1CA.1AF216)
18 378.9474 485.0526 (1E5.0D7916)
19 400 512 (20016)
20 421.0526 538.9474 (21A.F28716)
21 442.1053 565.8947 (235.E50E16)
22 463.1579 592.8421 (250.D79416)
23 484.2105 619.7895 (26B.CA1B16)
24 505.2632 646.7368 (286.BCA216)
25 526.3158 673.6842 (2A1.AF2916)
26 547.3684 700.6316 (2BC.A1AF16)
27 568.42105 727.57895 (2D7.943616)
28 589.4737 754.5263 (2F2.86BD16)
29 610.5263 781.4737 (30D.794316)
30 631.57895 808.42105 (328.6BCA16)
31 652.6316 835.3684 (343.5E5116)
32 673.6842 862.3158 (35E.50D716)
33 694.7368 889.2632 (37B.435E16)
34 715.7895 916.2105 (394.35E516)
35 736.8421 943.1579 (3AF.286C16)
36 757.8947 970.1053 (3CA.1AF216)
37 778.9474 997.0526 (3E5.0D7916)
38 800 1024 (40016)
39 821.0526 1050.9474 (41A.F28716)
40 842.1053 1077.8947 (435.E50E16)
41 863.1579 1104.8421 (450.D79416)
42 884.2105 1131.7895 (46B.CA1B16)
43 905.2632 1158.7368 (486.BCA216)
44 926.3158 1175.6842 (4A1.AF2916)
45 947.3684 1212.6316 (4BC.A1AF16)
46 968.42105 1239.57895 (4D7.943616)
47 989.4737 1266.5263 (4F2.86BD16)
48 1010.5263 1293.4737 (50D.794316)
49 1031.57895 1320.42105 (528.6BCA16)
50 1052.6316 1347.3684 (543.5E5116)
51 1073.6842 1374.3158 (55E.50D716)
52 1094.7368 1401.2632 (57B.435E16)
53 1115.7895 1428.2105 (594.35E516)
54 1136.8421 1455.1579 (5AF.286C16)
55 1157.8947 1482.1053 (5CA.1AF216)
56 1178.9474 1509.0526 (5E5.0D7916)
57 1200 1536 (60016)

Modes of 57edo

2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3MOS of type 18L 21s (augene)