17edf: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
! |Approx. ratiosof the [[15-limit]] | ! |Approx. ratiosof the [[15-limit]] | ||
|- | |- | ||
! colspan="2" style="text-align:center;" |0 | |||
| style="text-align:center;" |1/1 | | style="text-align:center;" |1/1 | ||
|- | |- | ||
Line 129: | Line 129: | ||
| style="text-align:center;" |2/1 | | style="text-align:center;" |2/1 | ||
|- | |- | ||
|30 | | style="text-align:center;" |30 | ||
|1238.7441 | | style="text-align:center;" |1238.7441 | ||
|25/12~33/16~112/55~81/40 | | style="text-align:center;" |25/12~33/16~112/55~81/40 | ||
|- | |- | ||
|31 | | style="text-align:center;" |31 | ||
|1280.0356 | | style="text-align:center;" |1280.0356 | ||
|21/10 | | style="text-align:center;" |21/10 | ||
|- | |- | ||
|32 | | style="text-align:center;" |32 | ||
|1321.3271 | | style="text-align:center;" |1321.3271 | ||
|32/15, 15/7, 28/13, 13/6 | | style="text-align:center;" |32/15, 15/7, 28/13, 13/6 | ||
|- | |- | ||
|33 | | style="text-align:center;" |33 | ||
|1362.6185 | | style="text-align:center;" |1362.6185 | ||
|24/11, 11/5 | | style="text-align:center;" |24/11, 11/5 | ||
|- | |- | ||
|34 | | style="text-align:center;" |34 | ||
|1403.91 | | style="text-align:center;" |1403.91 | ||
|9/4 | | style="text-align:center;" |9/4 | ||
|} | |} | ||
[[Category:Edf]] | [[Category:Edf]] |
Revision as of 19:39, 31 May 2021
Division of the just perfect fifth into 17 equal parts (17EDF) is related to 29 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 2.5474 cents compressed and the step size is about 41.2915 cents. Unlike 29edo, it is only consistent up to the 6-integer-limit, with discrepancy for the 7th harmonic.
Intervals
Degree | Cents | Approx. ratiosof the 15-limit |
---|---|---|
0 | 1/1 | |
1 | 41.2915 | 25/24~33/32~56/55~81/80 |
2 | 82.5829 | 21/20 |
3 | 123.8744 | 16/15, 15/14, 14/13, 13/12 |
4 | 165.1659 | 12/11, 11/10 |
5 | 206.45735 | 9/8 |
6 | 248.7488 | 8/7, 7/6, 15/13 |
7· | 289.0403 | 13/11 |
8 | 330.3318 | 6/5, 11/9 |
9 | 371.6232 | 5/4, 16/13 |
10 | 412.9147 | 14/11 |
11 | 455.2062 | 9/7, 13/10 |
12· | 495.49765 | 4/3 |
13 | 536.7891 | 11/8, 15/11 |
14 | 578.0806 | 7/5, 18/13 |
15 | 619.3721 | 10/7, 13/9 |
16 | 660.6635 | 16/11, 22/15 |
17· | 701.955 | 3/2 |
18 | 743.2465 | 14/9, 20/13 |
19 | 784.5379 | 11/7 |
20 | 825.8294 | 8/5, 13/8 |
21 | 867.1209 | 5/3, 18/11 |
22· | 908.41235 | 22/13 |
23 | 949.7038 | 7/4, 12/7, 26/15 |
24 | 990.9952 | 16/9 |
25 | 1032.32868 | 11/6, 20/11 |
26 | 1073.5782 | 15/8, 28/15, 13/7, 24/13 |
27 | 1114.8697 | 40/21 |
28 | 1156.1612 | 48/25~64/33~55/28 ~160/81 |
29 | 1197.45265 | 2/1 |
30 | 1238.7441 | 25/12~33/16~112/55~81/40 |
31 | 1280.0356 | 21/10 |
32 | 1321.3271 | 32/15, 15/7, 28/13, 13/6 |
33 | 1362.6185 | 24/11, 11/5 |
34 | 1403.91 | 9/4 |