62edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
Created page with "'''Division of the third harmonic into 62 equal parts''' (62edt) is related to 39 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 3..."
Tags: Mobile edit Mobile web edit
 
Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Line 130: Line 130:
| | 24
| | 24
| | 736.2406
| | 736.2406
| |  
| | 153/100
| |  
| |  
|-
|-
| | 25
| | 25
| | 766.9173
| | 766.9173
| |  
| | 81/52
| |  
| |  
|-
|-
Line 150: Line 150:
| | 28
| | 28
| | 858.9474
| | 858.9474
| |  
| | 69/42
| |  
| |  
|-
|-
| | 29
| | 29
| | 889.6241
| | 889.6241
| |  
| | 117/70
| |  
| |  
|-
|-
Line 175: Line 175:
| | 33
| | 33
| | 1012.3309
| | 1012.3309
| |  
| | 70/39
| |  
| |  
|-
|-
| | 34
| | 34
| | 1043.0076
| | 1043.0076
| |  
| | 42/23
| |  
| |  
|-
|-
| | 35
| | 35
| | 1073.6843
| | 1073.6843
| |  
| | 119/64
| |  
| |  
|-
|-
Line 195: Line 195:
| | 37
| | 37
| | 1135.0377
| | 1135.0377
| |  
| | 52/27
| |  
| |  
|-
|-
| | 38
| | 38
| | 1165.7144
| | 1165.7144
| |  
| | 100/51
| |  
| |  
|-
|-
Line 230: Line 230:
| | 44
| | 44
| | 1349.7745
| | 1349.7745
| | [[24/11]]
| | [[12/11|24/11]]
| |  
| |  
|-
|-

Revision as of 01:20, 3 March 2019

Division of the third harmonic into 62 equal parts (62edt) is related to 39 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 3.6090 cents compressed and the step size is about 30.6767 cents. It is consistent to the 7-integer-limit, but not to the 8-integer-limit. In comparison, 39edo is only consistent up to the 6-integer-limit.

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 30.6767 57/56, 56/55
2 61.3534 57/55
3 92.0301 96/91
4 122.7068
5 153.3835
6 184.0602 208/187
7 214.7369
8 245.4135 121/105
9 276.0902
10 306.7669
11 337.4436 243/200
12 368.1203
13 398.7970 34/27
14 429.4737
15 460.1504
16 490.8271
17 521.5038 77/57
18 552.1805 11/8
19 582.8572 7/5
20 613.5339 57/40
21 644.2106
22 674.8873 96/65
23 705.5640
24 736.2406 153/100
25 766.9173 81/52
26 797.5940
27 828.2707
28 858.9474 69/42
29 889.6241 117/70
30 920.3008
31 950.9775
32 981.6542
33 1012.3309 70/39
34 1043.0076 42/23
35 1073.6843 119/64
36 1104.3610
37 1135.0377 52/27
38 1165.7144 100/51
39 1196.3910
40 1227.0677 65/32
41 1257.7444
42 1288.4211 40/19
43 1319.0978 15/7
44 1349.7745 24/11
45 1380.4512
46 1411.1279
47 1441.8046 23/10
48 1472.4813
49 1503.1580 81/34
50 1533.8347
51 1564.5114 200/81
52 1595.1881 98/39
53 1625.8648
54 1656.5415
55 1687.2181
56 1717.8948
57 1748.5715
58 1779.2482
59 1809.9249 91/32
60 1840.6016 55/19
61 1871.2783 56/19
62 1901.9550 exact 3/1 just perfect fifth plus an octave