User:BudjarnLambeth/Sandbox2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
Line 1: Line 1:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
14edo benefits from [[octave stretch]] as harmonics 3, 7, and 11 are all tuned flat. [[22edt]], [[ed6|36ed6]] and [[42zpi]] are among the possible choices.
Having a flat tendency, 16et is best tuned with [[stretched octave]]s, which improve the accuracy of wide-voiced JI chords and [[rooted]] harmonics especially on inharmonic timbres such as bells and gamelans, with [[25edt]], [[41ed6]], and [[57ed12]] being good options.


What follows is a comparison of stretched- and compressed-octave 14edo tunings.
What follows is a comparison of stretched- and compressed-octave 16edo tunings.


; 14edo
; 16edo
* Step size: 85.714{{c}}, octave size: 1200.0{{c}}  
* Step size: 75.000{{c}}, octave size: 1200.0{{c}}  
Pure-octaves 14edo approximates all harmonics up to 16 within NNN{{c}}.
Pure-octaves 16edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|14|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14edo}}
{{Harmonics in equal|16|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16edo}}
{{Harmonics in equal|14|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14edo (continued)}}
{{Harmonics in equal|16|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16edo (continued)}}


; [[WE|14et, 13-limit WE tuning]]  
; [[WE|16et, 2.5.7.13 WE tuning]]  
* Step size: 85.759{{c}}, octave size: NNN{{c}}
* Step size: 75.105{{c}}, octave size: NNN{{c}}
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.5.7.13 WE tuning and 2.5.7.13 [[TE]] tuning both do this.
{{Harmonics in cet|85.759|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14et, 13-limit WE tuning}}
{{Harmonics in cet|75.105|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16et, 2.5.7.13 WE tuning}}
{{Harmonics in cet|85.759|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14et, 13-limit WE tuning (continued)}}
{{Harmonics in cet|75.105|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16et, 2.5.7.13 WE tuning (continued)}}


; [[WE|14et, 11-limit WE tuning]]  
; [[zpi|15zpi]]  
* Step size: 85.842{{c}}, octave size: NNN{{c}}
* Step size: 75.262{{c}}, octave size: NNN{{c}}
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this.
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 15zpi does this.
{{Harmonics in cet|85.842|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning}}
{{Harmonics in cet|75.262|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 15zpi}}
{{Harmonics in cet|85.842|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14et, 11-limit WE tuning (continued)}}
{{Harmonics in cet|75.262|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 15zpi (continued)}}


; [[36ed6]]  
; [[WE|16et, 13-limit WE tuning]]  
* Step size: 86.165{{c}}, octave size: 1206.3{{c}}
* Step size: 75.315{{c}}, octave size: NNN{{c}}
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 36ed6 does this.
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in equal|36|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 36ed6}}
{{Harmonics in cet|75.315|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16et, 13-limit WE tuning}}
{{Harmonics in equal|36|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 36ed6 (continued)}}
{{Harmonics in cet|75.315|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16et, 13-limit WE tuning (continued)}}


; [[zpi|42zpi]]  
; [[57ed12]]  
* Step size: 86.329{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 42zpi does this.
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 57ed12 does this.
{{Harmonics in cet|86.329|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42zpi}}
{{Harmonics in equal|57|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 57ed12}}
{{Harmonics in cet|86.329|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42zpi (continued)}}
{{Harmonics in equal|57|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 57ed12 (continued)}}


; [[22edt]]  
; [[41ed6]]  
* Step size: 86.453{{c}}, octave size: 1210.3{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 14edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 22edt does this.
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 41ed6 does this.
{{Harmonics in equal|22|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|41|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41ed6}}
{{Harmonics in equal|22|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 22edt (continued)}}
{{Harmonics in equal|41|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41ed6 (continued)}}
 
; [[25edt]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 25edt does this.
{{Harmonics in equal|25|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 25edt}}
{{Harmonics in equal|25|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 25edt (continued)}}


= Title2 =
= Title2 =

Revision as of 00:45, 28 August 2025

Title1

Octave stretch or compression

Having a flat tendency, 16et is best tuned with stretched octaves, which improve the accuracy of wide-voiced JI chords and rooted harmonics especially on inharmonic timbres such as bells and gamelans, with 25edt, 41ed6, and 57ed12 being good options.

What follows is a comparison of stretched- and compressed-octave 16edo tunings.

16edo
  • Step size: 75.000 ¢, octave size: 1200.0 ¢

Pure-octaves 16edo approximates all harmonics up to 16 within NNN ¢.

Approximation of harmonics in 16edo
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.0 -27.0 +0.0 -11.3 -27.0 +6.2 +0.0 +21.1 -11.3 -26.3 -27.0
Relative (%) +0.0 -35.9 +0.0 -15.1 -35.9 +8.2 +0.0 +28.1 -15.1 -35.1 -35.9
Steps
(reduced)
16
(0)
25
(9)
32
(0)
37
(5)
41
(9)
45
(13)
48
(0)
51
(3)
53
(5)
55
(7)
57
(9)
Approximation of harmonics in 16edo (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -15.5 +6.2 +36.7 +0.0 -30.0 +21.1 +2.5 -11.3 -20.8 -26.3 -28.3 -27.0
Relative (%) -20.7 +8.2 +49.0 +0.0 -39.9 +28.1 +3.3 -15.1 -27.7 -35.1 -37.7 -35.9
Steps
(reduced)
59
(11)
61
(13)
63
(15)
64
(0)
65
(1)
67
(3)
68
(4)
69
(5)
70
(6)
71
(7)
72
(8)
73
(9)
16et, 2.5.7.13 WE tuning
  • Step size: 75.105 ¢, octave size: NNN ¢

Stretching the octave of 16edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 2.5.7.13 WE tuning and 2.5.7.13 TE tuning both do this.

Approximation of harmonics in 16et, 2.5.7.13 WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.7 -24.3 +3.4 -7.4 -22.7 +10.9 +5.0 +26.4 -5.7 -20.5 -21.0
Relative (%) +2.2 -32.4 +4.5 -9.9 -30.2 +14.5 +6.7 +35.2 -7.7 -27.4 -27.9
Step 16 25 32 37 41 45 48 51 53 55 57
Approximation of harmonics in 16et, 2.5.7.13 WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -9.3 +12.6 -31.8 +6.7 -23.1 +28.1 +9.6 -4.1 -13.4 -18.9 -20.7 -19.3
Relative (%) -12.4 +16.7 -42.3 +8.9 -30.8 +37.4 +12.8 -5.4 -17.9 -25.1 -27.6 -25.7
Step 59 61 62 64 65 67 68 69 70 71 72 73
15zpi
  • Step size: 75.262 ¢, octave size: NNN ¢

Stretching the octave of 16edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 15zpi does this.

Approximation of harmonics in 15zpi
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.2 -20.4 +8.4 -1.6 -16.2 +18.0 +12.6 +34.5 +2.6 -11.9 -12.0
Relative (%) +5.6 -27.1 +11.1 -2.2 -21.5 +23.9 +16.7 +45.8 +3.4 -15.8 -16.0
Step 16 25 32 37 41 45 48 51 53 55 57
Approximation of harmonics in 15zpi (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -0.1 +22.2 -22.0 +16.8 -12.9 -36.6 +20.3 +6.8 -2.4 -7.7 -9.4 -7.8
Relative (%) -0.1 +29.4 -29.3 +22.3 -17.2 -48.7 +27.0 +9.0 -3.2 -10.3 -12.5 -10.4
Step 59 61 62 64 65 66 68 69 70 71 72 73
16et, 13-limit WE tuning
  • Step size: 75.315 ¢, octave size: NNN ¢

Stretching the octave of 16edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.

Approximation of harmonics in 16et, 13-limit WE tuning
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +5.0 -19.1 +10.1 +0.3 -14.0 +20.3 +15.1 +37.2 +5.4 -9.0 -9.0
Relative (%) +6.7 -25.3 +13.4 +0.5 -18.6 +27.0 +20.1 +49.3 +7.1 -11.9 -11.9
Step 16 25 32 37 41 45 48 51 53 55 57
Approximation of harmonics in 16et, 13-limit WE tuning (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +3.1 +25.4 -18.7 +20.2 -9.5 -33.1 +23.9 +10.4 +1.3 -4.0 -5.6 -4.0
Relative (%) +4.1 +33.7 -24.9 +26.8 -12.6 -44.0 +31.7 +13.8 +1.7 -5.2 -7.4 -5.3
Step 59 61 62 64 65 66 68 69 70 71 72 73
57ed12
  • Step size: NNN ¢, octave size: NNN ¢

Stretching the octave of 16edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 57ed12 does this.

Approximation of harmonics in 57ed12
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +7.6 -15.1 +15.1 +6.2 -7.6 +27.5 +22.7 -30.3 +13.7 -0.3 +0.0
Relative (%) +10.0 -20.1 +20.1 +8.2 -10.0 +36.4 +30.1 -40.1 +18.2 -0.4 +0.0
Steps
(reduced)
16
(16)
25
(25)
32
(32)
37
(37)
41
(41)
45
(45)
48
(48)
50
(50)
53
(53)
55
(55)
57
(0)
Approximation of harmonics in 57ed12 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +12.4 +35.0 -8.9 +30.3 +0.8 -22.7 +34.6 +21.3 +12.3 +7.3 +5.8 +7.6
Relative (%) +16.4 +46.4 -11.9 +40.1 +1.0 -30.1 +45.9 +28.2 +16.3 +9.6 +7.7 +10.0
Steps
(reduced)
59
(2)
61
(4)
62
(5)
64
(7)
65
(8)
66
(9)
68
(11)
69
(12)
70
(13)
71
(14)
72
(15)
73
(16)
41ed6
  • Step size: NNN ¢, octave size: NNN ¢

Stretching the octave of 16edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 41ed6 does this.

Approximation of harmonics in 41ed6
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +10.5 -10.5 +21.0 +13.0 +0.0 +35.8 +31.6 -21.0 +23.5 +9.8 +10.5
Relative (%) +13.9 -13.9 +27.8 +17.2 +0.0 +47.3 +41.7 -27.8 +31.1 +13.0 +13.9
Steps
(reduced)
16
(16)
25
(25)
32
(32)
37
(37)
41
(0)
45
(4)
48
(7)
50
(9)
53
(12)
55
(14)
57
(16)
Approximation of harmonics in 41ed6 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +23.3 -29.4 +2.5 -33.6 +12.8 -10.5 -28.5 +34.0 +25.2 +20.4 +19.1 +21.0
Relative (%) +30.7 -38.8 +3.3 -44.4 +16.9 -13.9 -37.6 +45.0 +33.4 +26.9 +25.2 +27.8
Steps
(reduced)
59
(18)
60
(19)
62
(21)
63
(22)
65
(24)
66
(25)
67
(26)
69
(28)
70
(29)
71
(30)
72
(31)
73
(32)
25edt
  • Step size: NNN ¢, octave size: NNN ¢

Stretching the octave of 16edo by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 25edt does this.

Approximation of harmonics in 25edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +17.3 +0.0 +34.5 +28.6 +17.3 -21.4 -24.3 +0.0 -30.2 +33.0 +34.5
Relative (%) +22.7 +0.0 +45.4 +37.6 +22.7 -28.1 -32.0 +0.0 -39.8 +43.4 +45.4
Steps
(reduced)
16
(16)
25
(0)
32
(7)
37
(12)
41
(16)
44
(19)
47
(22)
50
(0)
52
(2)
55
(5)
57
(7)
Approximation of harmonics in 25edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -28.0 -4.1 +28.6 -7.1 -36.0 +17.3 -0.3 -13.0 -21.4 -25.8 -26.7 -24.3
Relative (%) -36.8 -5.4 +37.6 -9.3 -47.3 +22.7 -0.4 -17.1 -28.1 -34.0 -35.1 -32.0
Steps
(reduced)
58
(8)
60
(10)
62
(12)
63
(13)
64
(14)
66
(16)
67
(17)
68
(18)
69
(19)
70
(20)
71
(21)
72
(22)

Title2

Possible tunings to be used on each page

You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.

(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)

High-priority

13edo

  • Main: "13edo and optimal octave stretching"
  • 2.5.11.13 WE (92.483c)
  • 2.5.7.13 WE (92.804c)
  • 2.3 WE (91.405c) (good for opposite 7 mapping)
  • 38zpi (92.531c)

14edo

  • 22edt
  • 36ed6
  • 11-limit WE (85.842c)
  • 13-limit WE (85.759c)
  • 42zpi (86.329c)

16edo

  • 25edt
  • 41ed6
  • 57ed12
  • 2.5.7.13 WE (75.105c)
  • 13-limit WE (75.315c)
  • 15zpi (75.262c)

99edo

  • 157edt
  • 256ed6
  • 7-limit WE (12.117c)
  • 13-limit WE (12.123c)
  • 567zpi (12.138c)
  • 568zpi (12.115c)

23edo (narrow down edonoi & ZPIs)

  • Main: "23edo and octave stretching"
  • 36edt
  • 59ed6
  • 60ed6
  • 68ed8
  • 11ed7/5
  • 1ed33/32
  • 2.3.5.13 WE (52.447c)
  • 2.7.11 WE (51.962c)
  • 13-limit WE (52.237c)
  • 83zpi (53.105c)
  • 84zpi (52.615c)
  • 85zpi (52.114c)
  • 86zpi (51.653c)
  • 87zpi (51.201c)

60edo (narrow down edonoi & ZPIs)

  • 95edt
  • 139ed5
  • 155ed6
  • 208ed11
  • 255ed19
  • 272ed23 (great for catnip temperament)
  • 13-limit WE (20.013c)
  • 299zpi (20.128c)
  • 300zpi (20.093c)
  • 301zpi (20.027c)
  • 302zpi (19.962c)
  • 303zpi (19.913c)
  • 304zpi (19.869c)
Medium priority

32edo (narrow down ZPIs)

  • 90ed7
  • 51edt
  • 75ed5
  • 1ed46/45
  • 11-limit WE (37.453c)
  • 13-limit WE (37.481c)
  • 131zpi (37.862c)
  • 132zpi (37.662c)
  • 133zpi (37.418c)
  • 134zpi (37.176c)

33edo (narrow down edonoi)

  • 76ed5
  • 92ed7
  • 52edt
  • 1ed47/46
  • 114ed11
  • 122ed13
  • 93ed7
  • 23edPhi
  • 77ed5
  • 123ed13
  • 115ed11
  • 11-limit WE (36.349c)
  • 13-limit WE (36.357c)
  • 137zpi (36.628c)
  • 138zpi (36.394c)
  • 139zpi (36.179c)

39edo

  • 62edt
  • 101ed6
  • 18ed11/8
  • 2.3.5.11 WE (30.703c)
  • 2.3.7.11.13 WE (30.787c)
  • 13-limit WE (30.757c)
  • 171zpi (30.973c)
  • 172zpi (30.836c)
  • 173zpi (30.672c)

42edo

  • 42ed257/128 (replace w something similar but simpler)
  • AS123/121 (1ed123/121)
  • 11ed6/5
  • 34ed7/4
  • 7-limit WE (28.484c)
  • 13-limit WE (28.534c)
  • 189zpi (28.689c)
  • 190zpi (28.572c)
  • 191zpi (28.444c)

45edo

  • 126ed7
  • 13ed11/9
  • 7-limit WE (26.745c)
  • 13-limit WE (26.695c)
  • 207zpi (26.762)
  • 208zpi (26.646)
  • 209zpi (26.550)

54edo

  • 86edt
  • 126ed5
  • 152ed7
  • 38ed5/3
  • 40ed5/3
  • 2.3.7.11.13 WE (22.180c)
  • 13-limit WE (22.198c)
  • 262zpi (22.313c)
  • 263zpi (22.243c)
  • 264zpi (22.175c)

59edo (narrow down ZPIs)

  • 93edt
  • 166ed7
  • 203ed11
  • 7-limit WE (20.301c)
  • 11-limit WE (20.310c)
  • 13-limit WE (20.320c)
  • 293zpi (20.454c)
  • 294zpi (20.399c)
  • 295zpi (20.342c)
  • 296zpi (20.282c)
  • 297zpi (20.229c)

64edo (narrow down ZPIs)

  • 149ed5
  • 180ed7
  • 222ed11
  • 47ed5/3
  • 11-limit WE (18.755c)
  • 13-limit WE (18.752c)
  • 325zpi (18.868c)
  • 326zpi (18.816c)
  • 327zpi (18.767c)
  • 328zpi (18.721c)
  • 329zpi (18.672c)
  • 330zpi (18.630c)

103edo (narrow down edonoi, choose ZPIS)

  • 163edt
  • 239ed5
  • 289ed7
  • 356ed11
  • 381ed13
  • 421ed17
  • 466ed23
  • 13-limit WE (11.658c)
  • Best nearby ZPI(s)

118edo (choose ZPIS)

  • 187edt
  • 69edf
  • 13-limit WE (10.171c)
  • Best nearby ZPI(s)

152edo (choose ZPIS)

  • 241edt
  • 13-limit WE (7.894c)
  • Best nearby ZPI(s)
Low priority

111edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

125edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

145edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

159edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

166edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

182edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

198edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

212edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

243edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

247edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)
Optional

25edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

26edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

29edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

30edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

34edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

35edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

36edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

37edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

5edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

6edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

9edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

10edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

11edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

15edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

18edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

48edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

20edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

24edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)

28edo

  • Nearby edt, ed6, ed12 and/or edf
  • Nearby ed5, ed10, ed7 and/or ed11 (optional)
  • 1-2 WE tunings
  • Best nearby ZPI(s)