OTC 12L 7s: Difference between revisions
Jump to navigation
Jump to search
m Text replacement - "Category:Tempered scales↵Category:Pages with mostly numerical content" to "Category:Tempered_scales Category:Pages with mostly numerical content" Tag: Reverted |
m Text replacement - "Category:Tempered_scales↵Category:Pages with mostly numerical content" to "Category:Tempered scales Category:Pages with mostly numerical content" Tags: Manual revert Mobile edit Mobile web edit |
||
Line 114: | Line 114: | ||
<ul><li>Noted as omnitetrachordal by Paul Erlich no later than 2002. See tuning-math list messages [http://robertinventor.com/tuning-math/s___4/msg_3675-3699.html#3685 3685] and [http://robertinventor.com/tuning-math/s__11/msg_10975-10999.html#10987 10987].</li></ul> | <ul><li>Noted as omnitetrachordal by Paul Erlich no later than 2002. See tuning-math list messages [http://robertinventor.com/tuning-math/s___4/msg_3675-3699.html#3685 3685] and [http://robertinventor.com/tuning-math/s__11/msg_10975-10999.html#10987 10987].</li></ul> | ||
[[Category:19-tone scales]] | [[Category:19-tone scales]] | ||
[[Category: | [[Category:Tempered scales]] | ||
[[Category:Pages with mostly numerical content]] | [[Category:Pages with mostly numerical content]] | ||
[[Category:MODMOS]] | [[Category:MODMOS]] | ||
[[Category:Omnitetrachordal]] | [[Category:Omnitetrachordal]] | ||
[[Category:Meantone]] | [[Category:Meantone]] |
Latest revision as of 03:08, 24 June 2025
Omnitetrachordal MOS scale
19 tones (8+3+8)
Meantone MOS; P<0 (oddly, neither this scale nor its dual can be tuned with a perfect 3/2!)
P = -4.8459060415
Q = 20.7295302077 (4/3 = 5L+2.5s)
L = 63.16 to 100.00 cents (97.26 cents @ Q)
s = 0.00 to 63.16 cents (4.69 cents @ Q)
9/8 = 2L+s (189.47 to 200.00 cents)
4/3 = 5L+3s (500.00 to 505.26 cents)
generator = 4/3
notable EDOs: 31, 43, 50, 55
symmetric mode: LsLLsLsLLsLLsLsLLsL
all modes:
LsL LsLsLLsL LsLsLLsL | LsLLsLsL LsLLsLsL LsL | |
sLL sLsLLsLL sLsLLsLL | sLLsLsLL sLLsLsLL sLL | |
LLs LsLLsLLs LsLLsLLs | LLsLsLLs LLsLsLLs LLs | |
LsL sLLsLLsL sLLsLLsL | LsLsLLsL LsLsLLsL LsL | |
sLsLLsLL sLsLLsLL sLL | ||
LsLLsLLs LsL LsLLsLLs | LsLLsLLs LsLLsLLs LLs | |
sLLsLLsL sLL sLLsLLsL | sLLsLLsL sLLsLLsL LsL | |
LLsLLsLs LLs LLsLLsLs | ||
LsLLsLsL LsL LsLLsLsL | ||
sLLsLsLL sLL sLLsLsLL | ||
LLsLsLLs LLs LLsLsLLs | ||
LsLsLLsL LsL LsLsLLsL | ||
sLsLLsLL sLL sLsLLsLL | ||
LsL LsLLsLLs LsLLsLLs | LsLLsLLs LLs LsLLsLLs | |
sLL sLLsLLsL sLLsLLsL | sLLsLLsL LsL sLLsLLsL | |
LLs LLsLLsLs LLsLLsLs | ||
LsL LsLLsLsL LsLLsLsL | LsLLsLLs LsLLsLLs LsL | |
sLL sLLsLsLL sLLsLsLL | sLLsLLsL sLLsLLsL sLL | |
LLs LLsLsLLs LLsLsLLs | LLsLLsLs LLsLLsLs LLs |