Lumatone mapping for 20edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
Line 1: Line 1:
{{Lumatone mapping intro}} You can use the b val, which creates the [[2L 5s]] Balzano mapping.
{{Lumatone mapping intro}} You can use the b val, which creates the [[2L 5s]] Balzano mapping.
 
== Balzano ==
{{Lumatone EDO mapping|n=20|start=4|xstep=2|ystep=3}}
{{Lumatone EDO mapping|n=20|start=4|xstep=2|ystep=3}}


== Other mappings ==
The Balzano mapping is not particularly optimal for making the best tuned intervals easily playable, however, which the [[Blackwood]] and [[Tetracot]] mappings solve.


This is not particularly optimal for making the best tuned intervals easily playable, however. Better options are the [[Blackwood]] mapping.
=== Blackwood ===
{{Lumatone EDO mapping|n=20|start=12|xstep=4|ystep=-1}}
{{Lumatone EDO mapping|n=20|start=12|xstep=4|ystep=-1}}


 
=== Tetracot ===
Or the [[Tetracot]] mapping.
{{Lumatone EDO mapping|n=20|start=17|xstep=3|ystep=-1}}
{{Lumatone EDO mapping|n=20|start=17|xstep=3|ystep=-1}}


{{Navbox Lumatone}}
{{Navbox Lumatone}}

Revision as of 14:38, 23 March 2025

There are many conceivable ways to map 20edo onto the onto the Lumatone keyboard. However, it has 4 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. You can use the b val, which creates the 2L 5s Balzano mapping.

Balzano

4
6
9
11
13
15
17
12
14
16
18
0
2
4
6
17
19
1
3
5
7
9
11
13
15
17
0
2
4
6
8
10
12
14
16
18
0
2
4
6
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
13
15
17
19
1
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
17
19
1
3
5
7
12
14
16
18
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
3
5
7
9
11
13
15
17
19
1
3
5
7
9
11
13
15
12
14
16
18
0
2
4
6
8
10
12
14
16
18
3
5
7
9
11
13
15
17
19
1
3
12
14
16
18
0
2
4
6
3
5
7
9
11
12
14

Other mappings

The Balzano mapping is not particularly optimal for making the best tuned intervals easily playable, however, which the Blackwood and Tetracot mappings solve.

Blackwood

12
16
15
19
3
7
11
14
18
2
6
10
14
18
2
17
1
5
9
13
17
1
5
9
13
17
16
0
4
8
12
16
0
4
8
12
16
0
4
8
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
2
6
10
14
18
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
5
9
13
17
1
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
4
8
12
16
0
19
3
7
11
15
19
3
7
11
15
19
3
7
11
15
19
3
10
14
18
2
6
10
14
18
2
6
10
14
18
2
5
9
13
17
1
5
9
13
17
1
5
16
0
4
8
12
16
0
4
11
15
19
3
7
2
6

Tetracot

17
0
19
2
5
8
11
18
1
4
7
10
13
16
19
0
3
6
9
12
15
18
1
4
7
10
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
13
16
19
2
5
8
11
13
16
19
2
5
8
11
14
17
0
3
6
9
12
15
18
1
4
7
10
4
7
10
13
16
19
2
5
8
11
14
17
0
3
6
9
12
12
15
18
1
4
7
10
13
16
19
2
5
8
11
3
6
9
12
15
18
1
4
7
10
13
11
14
17
0
3
6
9
12
2
5
8
11
14
10
13


ViewTalkEditLumatone mappings 
17edo18edo19edoLumatone mapping for 20edo21edo22edo23edo