29edf: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
m Todo harmonics collapsible |
||
Line 2: | Line 2: | ||
'''29EDF''' is the [[EDF|equal division of the just perfect fifth]] into 29 parts of 24.2053 [[cent|cents]] each, corresponding to 49.5758 [[edo]]. It is related to the [[Hemimean clan#Sengagen|sengagen temperament]], which tempers out 3136/3125 and 420175/419904 in the 7-limit. | '''29EDF''' is the [[EDF|equal division of the just perfect fifth]] into 29 parts of 24.2053 [[cent|cents]] each, corresponding to 49.5758 [[edo]]. It is related to the [[Hemimean clan#Sengagen|sengagen temperament]], which tempers out 3136/3125 and 420175/419904 in the 7-limit. | ||
{| class="wikitable" | == Harmonics == | ||
{{Harmonics in equal|29|3|2}} | |||
{{Harmonics in equal|29|3|2|start=12|collapsed=1}} | |||
== Intervals == | |||
{| class="wikitable mw-collapsible" | |||
|+ Intervals of 29edf | |||
|- | |- | ||
! | degree | ! | degree | ||
Line 309: | Line 315: | ||
*[[Carlos Gamma|Carlos Gamma (20 EDF)]] | *[[Carlos Gamma|Carlos Gamma (20 EDF)]] | ||
{{todo|expand}} | |||
[[Category:Edf]] | [[Category:Edf]] | ||
[[Category:Edonoi]] | [[Category:Edonoi]] |
Revision as of 05:37, 19 December 2024
← 28edf | 29edf | 30edf → |
29EDF is the equal division of the just perfect fifth into 29 parts of 24.2053 cents each, corresponding to 49.5758 edo. It is related to the sengagen temperament, which tempers out 3136/3125 and 420175/419904 in the 7-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.3 | +10.3 | -3.7 | -2.7 | -3.7 | -4.3 | +6.6 | -3.7 | +7.6 | +12.0 | +6.6 |
Relative (%) | +42.4 | +42.4 | -15.2 | -11.2 | -15.2 | -17.7 | +27.3 | -15.2 | +31.3 | +49.6 | +27.3 | |
Steps (reduced) |
50 (21) |
79 (21) |
99 (12) |
115 (28) |
128 (12) |
139 (23) |
149 (4) |
157 (12) |
165 (20) |
172 (27) |
178 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.9 | +6.0 | +7.6 | -7.3 | +8.7 | +6.6 | +9.8 | -6.4 | +6.0 | -1.9 | -6.3 |
Relative (%) | -45.2 | +24.7 | +31.3 | -30.3 | +36.1 | +27.3 | +40.5 | -26.3 | +24.7 | -8.0 | -25.9 | |
Steps (reduced) |
183 (9) |
189 (15) |
194 (20) |
198 (24) |
203 (0) |
207 (4) |
211 (8) |
214 (11) |
218 (15) |
221 (18) |
224 (21) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 24.2053 | 72/71 | |
2 | 48.4107 | 36/35 | |
3 | 72.6160 | 24/23 | |
4 | 96.8214 | 37/35, 55/52 | |
5 | 121.0267 | 15/14 | |
6 | 145.2321 | 25/23, 37/34 | |
7 | 169.4374 | 54/49 | |
8 | 193.6428 | 19/17 | |
9 | 217.8481 | 17/15 | |
10 | 242.0534 | 23/20 | |
11 | 266.2588 | 7/6 | |
12 | 290.4641 | 71/60 | |
13 | 314.6695 | 6/5 | |
14 | 338.8748 | 45/37 | |
15 | 363.0802 | 37/30 | |
16 | 387.2855 | 5/4 | |
17 | 411.4909 | 90/71 | |
18 | 435.6962 | 9/7 | |
19 | 459.9016 | 30/23 | |
20 | 484.1069 | 45/34 | |
21 | 508.3122 | 51/38 | |
22 | 532.5176 | 49/36 | |
23 | 556.7229 | ||
24 | 580.9283 | 7/5 | |
25 | 605.1336 | ||
26 | 629.3390 | 23/16 | |
27 | 653.5443 | 35/24 | |
28 | 677.7497 | ||
29 | 701.9550 | exact 3/2 | just perfect fifth |
30 | 726.16035 | ||
31 | 750.3657 | ||
32 | 774.5710 | ||
33 | 798.7764 | ||
34 | 822.9817 | 45/28 | |
35 | 847.1871 | ||
36 | 871.3924 | 81/49 | |
37 | 895.5978 | 57/34 | |
38 | 919.8031 | 17/10 | |
39 | 944.00845 | ||
40 | 968.2138 | 7/4 | |
41 | 992.4191 | 16/9 | |
42 | 1016.6245 | 9/5 | |
43 | 1040.8298 | ||
44 | 1065.0352 | ||
45 | 1089.2405 | 15/8 | |
46 | 1113.4459 | ||
47 | 1137.6512 | 56/29 | |
48 | 1161.8566 | ||
49 | 1186.0619 | (2/1-) | |
50 | 1210.2672 | (2/1+) | |
51 | 1234.4726 | 49/24 | |
52 | 1258.6779 | 29/14 | |
53 | 1282.8833 | 21/10 | |
54 | 1307.0886 | 17/8 | |
55 | 1331.2940 | 41/19 | |
56 | 1355.4993 | 35/16 | |
57 | 1379.7047 | 20/9 | |
58 | 1403.9100 | exact 9/4 |