470edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
m Partial undo
ArrowHead294 (talk | contribs)
mNo edit summary
Line 3: Line 3:


== Theory ==
== Theory ==
470 = 5 × 94, and 470edo shares the [[perfect fifth|fifth]] with [[94edo]]. Unlike 94edo, however, 470edo is only [[consistent]] to the [[5-odd-limit]]. Using the [[patent val]], the equal temperament [[tempering out|tempers out]] [[703125/702464]], 823543/820125, and 1500625/1492992 in the 7-limit; [[3025/3024]], [[4000/3993]], [[6250/6237]], [[19712/19683]], and 117649/117128 in the 11-limit. It [[support]]s [[uniwiz]] and [[decimetra]].
470edo shares the [[perfect fifth|fifth]] with [[94edo]]. Unlike 94edo, however, 470edo is only [[consistent]] to the [[5-odd-limit]]. Using the [[patent val]], the equal temperament [[tempering out|tempers out]] [[703125/702464]], 823543/820125, and 1500625/1492992 in the 7-limit; [[3025/3024]], [[4000/3993]], [[6250/6237]], [[19712/19683]], and 117649/117128 in the 11-limit. It [[support]]s [[uniwiz]] and [[decimetra]].


=== Prime harmonics ===
=== Prime harmonics ===
Line 9: Line 9:


=== Subsets and supersets ===
=== Subsets and supersets ===
Since 470 factors into 2 × 5 × 47, 470edo has subset edos {{EDOs| 2, 5, 10, 47, 94, and 235 }}.
Since 470 factors into {{factorisation|470}}, 470edo has subset edos {{EDOs| 2, 5, 10, 47, 94, and 235 }}.


== Regular temperament properties ==
== Regular temperament properties ==
Line 75: Line 75:
| [[Amity]] (5-limit)
| [[Amity]] (5-limit)
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct

Revision as of 18:17, 15 January 2025

← 469edo 470edo 471edo →
Prime factorization 2 × 5 × 47
Step size 2.55319 ¢ 
Fifth 275\470 (702.128 ¢) (→ 55\94)
Semitones (A1:m2) 45:35 (114.9 ¢ : 89.36 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

470edo shares the fifth with 94edo. Unlike 94edo, however, 470edo is only consistent to the 5-odd-limit. Using the patent val, the equal temperament tempers out 703125/702464, 823543/820125, and 1500625/1492992 in the 7-limit; 3025/3024, 4000/3993, 6250/6237, 19712/19683, and 117649/117128 in the 11-limit. It supports uniwiz and decimetra.

Prime harmonics

Approximation of prime harmonics in 470edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.17 -0.78 -1.17 +0.17 -0.53 -0.27 +1.21 -0.19 -0.64 -1.21
Relative (%) +0.0 +6.8 -30.6 -45.7 +6.7 -20.7 -10.8 +47.4 -7.4 -25.1 -47.2
Steps
(reduced)
470
(0)
745
(275)
1091
(151)
1319
(379)
1626
(216)
1739
(329)
1921
(41)
1997
(117)
2126
(246)
2283
(403)
2328
(448)

Subsets and supersets

Since 470 factors into 2 × 5 × 47, 470edo has subset edos 2, 5, 10, 47, 94, and 235.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 1600000/1594323, [-77 -10 40 [470 745 1091]] +0.0759 0.1897 7.43
2.3.5.7 703125/702464, 1500625/1492992, 1600000/1594323 [470 745 1091 1319]] +0.1608 0.2205 8.64
2.3.5.7.11 3025/3024, 4000/3993, 19712/19683, 117649/117128 [470 745 1091 1319 1626]] +0.1187 0.2144 8.40
2.3.5.7.11.13 625/624, 1575/1573, 2080/2079, 13720/13689, 15379/15360 [470 745 1091 1319 1626 1739]] +0.1227 0.1959 7.67
2.3.5.7.11.13.17 595/594, 625/624, 833/832, 1575/1573, 3185/3179, 8624/8619 [470 745 1091 1319 1626 1739 1921]] +0.1148 0.1824 7.14

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 133\470 339.57 243/200 Amity (5-limit)

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct