1277edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
m Partial undo
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{{comma basis begin}}
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 41: Line 50:
| 0.0405
| 0.0405
| 4.31
| 4.31
{{comma basis end}}
|}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{{rank-2 begin}}
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
|-
| 1
| 1
Line 63: Line 79:
| 9/7
| 9/7
| [[Supermajor]]
| [[Supermajor]]
{{rank-2 end}}
|}
{{orf}}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


== Music ==
== Music ==

Revision as of 13:04, 16 November 2024

← 1276edo 1277edo 1278edo →
Prime factorization 1277 (prime)
Step size 0.939702 ¢ 
Fifth 747\1277 (701.958 ¢)
Semitones (A1:m2) 121:96 (113.7 ¢ : 90.21 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

1277edo is consistent to the 11-odd-limit. The equal temperament tempers out 4375/4374, 52734375/52706752, 645700815/645657712 (starscape comma) and [51 -13 -1 -10 (technologisma) in the 7-limit; 151263/151250, 759375/758912, and 2097152/2096325 in the 11-limit. It supports monzismic, supermajor, revopent, as well as the rank-3 temperament bragi.

Prime harmonics

Approximation of prime harmonics in 1277edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 +0.003 -0.096 +0.007 +0.287 -0.434 +0.291 +0.373 +0.387 +0.337 +0.462
Relative (%) +0.0 +0.3 -10.2 +0.8 +30.6 -46.2 +31.0 +39.7 +41.1 +35.8 +49.1
Steps
(reduced)
1277
(0)
2024
(747)
2965
(411)
3585
(1031)
4418
(587)
4725
(894)
5220
(112)
5425
(317)
5777
(669)
6204
(1096)
6327
(1219)

Subsets and supersets

1277edo is the 206th prime edo. 2554edo, which divides the edostep in two, is the smallest edo distinctly consistent through the 41-odd-limit, and provides correction for harmonics 11 through 41.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [2024 -1277 [1277 2024]] −0.0009 0.0009 0.10
2.3.5 [54 -37 2, [-67 -9 35 [1277 2024 2965]] +0.0132 0.0199 2.12
2.3.5.7 4375/4374, 52734375/52706752, [51 -13 -1 -10 [1277 2024 2965 3585]] +0.0093 0.0186 1.98
2.3.5.7.11 4375/4374, 151263/151250, 759375/758912, 2097152/2096325 [1277 2024 2965 3585 4418]] −0.0092 0.0405 4.31

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 265\1277 249.021 [-27 11 3 1 Monzismic
1 380\1277 357.087 768/625 Dodifo
1 463\1277 435.082 9/7 Supermajor

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium
  • "mututhery" from albumwithoutspaces (2024) – Spotify | Bandcamp | YouTube – monzismic[19] in 1277edo tuning