User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions
Line 40: | Line 40: | ||
! | ! | ||
|- | |- | ||
|Do#, Sol# | |F/C/G ut# | ||
Do#, Sol# | |||
د#, | د#, | ||
ص# | ص# | ||
|Sol# | |F/C/G ut# | ||
Sol# | |||
ص# | ص# | ||
|Re# | |G/D/A re# | ||
Re# | |||
ر# | ر# | ||
|1\11, 46.154 | |1\11, 46.154 | ||
Line 56: | Line 59: | ||
|3\9, 163.636 | |3\9, 163.636 | ||
|- | |- | ||
| Reb, Lab | | G/D/A reb | ||
Reb, Lab | |||
رb, لb | رb, لb | ||
|Lab | |G/D/A reb | ||
Lab | |||
لb | لb | ||
|Mib | |A/E/B mib | ||
Mib | |||
م | م | ||
|3\11, 138.462 | |3\11, 138.462 | ||
Line 69: | Line 75: | ||
|1\9, 54.545 | |1\9, 54.545 | ||
|- | |- | ||
|'''Re, La''' | |'''G/D/A re''' | ||
'''Re, La''' | |||
'''ر, ل''' | '''ر, ل''' | ||
|'''La''' | |'''G/D/A re''' | ||
'''La''' | |||
ل | ل | ||
|'''Mi''' | |'''A/E/B mi''' | ||
'''Mi''' | |||
م | م | ||
|'''4\11,''' '''184.615''' | |'''4\11,''' '''184.615''' | ||
Line 83: | Line 92: | ||
|'''4\9,''' '''218.182''' | |'''4\9,''' '''218.182''' | ||
|- | |- | ||
|Re#, La# | |G/D/A re# | ||
Re#, La# | |||
ر,# ل# | ر,# ل# | ||
|La# | |G/D/A re# | ||
La# | |||
ل# | ل# | ||
|Mi# | |A/E/B mi# | ||
Mi# | |||
م# | م# | ||
|5\11, 230.769 | |5\11, 230.769 | ||
|4\8, 252.632 | | rowspan="2" |4\8, 252.632 | ||
|7\13, 270.967 | |7\13, 270.967 | ||
| | |3\5, 300 | ||
| 8\12, 331.034 | | 8\12, 331.034 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
|7\9, 381.818 | |7\9, 381.818 | ||
|- | |- | ||
|'''Mib, Sib''' | |A/E/B mibb | ||
Mibb, Sibb | |||
مbb,تbb | |||
|A/E/B mibb | |||
Sibb | |||
تbb | |||
|B/F/C fab | |||
Fab | |||
فb | |||
|6\11, 276.923 | |||
|6\13, 232.258 | |||
|2\5, 200 | |||
|4\12, 165.517 | |||
|2\7, 141.176 | |||
|2\9, 109.091 | |||
|- | |||
|'''A/E/B mib''' | |||
'''Mib, Sib''' | |||
'''مb,تb''' | '''مb,تb''' | ||
|'''Sib''' | |'''A/E/B mib''' | ||
'''Sib''' | |||
تb | تb | ||
|'''F''' | |'''B/F/C fa''' | ||
'''Fa''' | |||
'''ف''' | '''ف''' | ||
|'''7\11,''' '''323.077''' | |'''7\11,''' '''323.077''' | ||
|'''5\8,''' '''315.789''' | |'''5\8,''' '''315.789''' | ||
|'''8\13,''' '''309.677''' | |'''8\13,''' '''309.677''' | ||
|'''3\5,''' '''300''' | |||
|'''7\12,''' '''289.655''' | |'''7\12,''' '''289.655''' | ||
|'''4\7,''' '''282.353''' | |'''4\7,''' '''282.353''' | ||
|'''5\9,''' '''272.727''' | |'''5\9,''' '''272.727''' | ||
|- | |- | ||
|Mi, Si | |A/E/B mi | ||
Mi, Si | |||
م, ت | م, ت | ||
| Si | | A/E/B mi | ||
Si | |||
ت | ت | ||
|Fa# | |B/F/C fa# | ||
Fa# | |||
ف# | ف# | ||
|8\11, 369.231 | |8\11, 369.231 | ||
Line 124: | Line 159: | ||
|8\9, 436.364 | |8\9, 436.364 | ||
|- | |- | ||
|Mi#, Si# | |A/E/B mi# | ||
Mi#, Si# | |||
م,#ت# | م,#ت# | ||
|Si# | |A/E/B mi# | ||
Si# | |||
ت# | ت# | ||
|Fax | |B/F/C fax | ||
Fax | |||
فx | فx | ||
|9\11, 415.385 | |9\11, 415.385 | ||
Line 138: | Line 176: | ||
|11\9, 600 | |11\9, 600 | ||
|- | |- | ||
|Dob, Solb | |F/C/G utb | ||
Dob, Solb | |||
دb, | دb, | ||
صb | صb | ||
| Dob | | B/F/C fab | ||
Dob | |||
دb | دb | ||
|Solb | |C/G/D solb | ||
Solb | |||
صb | صb | ||
|10\11, 461.538 | |10\11, 461.538 | ||
Line 153: | Line 194: | ||
|6\9, 327.273 | |6\9, 327.273 | ||
|- | |- | ||
!Do, Sol | !F/C/G ut | ||
Do, Sol | |||
د, ص | د, ص | ||
!Do | !B/F/C fa | ||
Do | |||
د | د | ||
!Sol | !C/G/D sol | ||
Sol | |||
ص | ص | ||
!'''11\11,''' '''507.692''' | !'''11\11,''' '''507.692''' | ||
Line 167: | Line 211: | ||
!'''9\9,''' '''490.909''' | !'''9\9,''' '''490.909''' | ||
|- | |- | ||
|Do#, Sol# | |F/C/G ut# | ||
Do#, Sol# | |||
د#, | د#, | ||
ص# | ص# | ||
|Do# | |B/F/C fa# | ||
Do# | |||
د# | د# | ||
|Sol# | |C/G/D sol# | ||
Sol# | |||
ص# | ص# | ||
|12\11, 553.846 | |12\11, 553.846 | ||
Line 183: | Line 230: | ||
|12\9, 654.545 | |12\9, 654.545 | ||
|- | |- | ||
|Reb, Lab | |G/D/A reb | ||
Reb, Lab | |||
رb, لb | رb, لb | ||
|Reb | |C/G/D solb | ||
Reb | |||
رb | رb | ||
|Lab | |D/A/E lab | ||
Lab | |||
لb | لb | ||
|14\11, 646.154 | |14\11, 646.154 | ||
Line 196: | Line 246: | ||
|10\9, 545.455 | |10\9, 545.455 | ||
|- | |- | ||
|'''Re, La''' | |'''G/D/A re''' | ||
'''Re, La''' | |||
'''ر, ل''' | '''ر, ل''' | ||
|'''Re''' | |'''C/G/D sol''' | ||
'''Re''' | |||
ر | ر | ||
|'''La''' | |'''D/A/E la''' | ||
'''La''' | |||
ل | ل | ||
|'''15\11,''' '''692.308''' | |'''15\11,''' '''692.308''' | ||
Line 210: | Line 263: | ||
|'''13\9,''' '''709.091''' | |'''13\9,''' '''709.091''' | ||
|- | |- | ||
|Re#, La# | |G/D/A re# | ||
Re#, La# | |||
ر,# ل# | ر,# ل# | ||
|Re# | |C/G/D sol# | ||
Re# | |||
د# | د# | ||
|La# | |D/A/E la# | ||
La# | |||
ل# | ل# | ||
|16\11, 738.462 | |16\11, 738.462 | ||
Line 224: | Line 280: | ||
|16\9, 872.727 | |16\9, 872.727 | ||
|- | |- | ||
|'''Mib, Sib''' | |'''A/E/B mib''' | ||
'''Mib, Sib''' | |||
'''مb,تb''' | '''مb,تb''' | ||
|'''Mib''' | |'''D/A/E lab''' | ||
'''Mib''' | |||
مb | مb | ||
|'''Sib''' | |'''E/B/F síb''' | ||
'''Sib''' | |||
تb | تb | ||
|'''18\11,''' '''830.769''' | |'''18\11,''' '''830.769''' | ||
Line 237: | Line 296: | ||
|'''14\9,''' '''763.636''' | |'''14\9,''' '''763.636''' | ||
|- | |- | ||
|Mi, Si | |A/E/B mi | ||
Mi, Si | |||
م, ت | م, ت | ||
|Mi | |D/A/E la | ||
Mi | |||
م | م | ||
|Si | |E/B/F sí | ||
Si | |||
ت | ت | ||
|19\11, 876.923 | |19\11, 876.923 | ||
Line 251: | Line 313: | ||
|17\9, 927.727 | |17\9, 927.727 | ||
|- | |- | ||
|Mi#, Si# | |A/E/B mi# | ||
Mi#, Si# | |||
م,#ت# | م,#ت# | ||
| Mi# | | D/A/E la# | ||
Mi# | |||
م# | م# | ||
|Si# | |E/B/F sí# | ||
Si# | |||
ت# | ت# | ||
|20\11, 923.077 | |20\11, 923.077 | ||
Line 265: | Line 330: | ||
|20\9, 1090.909 | |20\9, 1090.909 | ||
|- | |- | ||
|Dob, Solb | |F/C/G utb | ||
Dob, Solb | |||
دb, | دb, | ||
صb | صb | ||
|Solb | |F/C/G utb | ||
Solb | |||
صb | صb | ||
|Reb | |G/D/A reb | ||
Reb | |||
رb | رb | ||
|21\11, 969.231 | |21\11, 969.231 | ||
Line 280: | Line 348: | ||
|15\9, 818.182 | |15\9, 818.182 | ||
|- | |- | ||
!Do, Sol | !F/C/G ut | ||
Do, Sol | |||
د, ص | د, ص | ||
!Sol | !F/C/G ut | ||
Sol | |||
ص | ص | ||
!Re | !G/D/A re | ||
Re | |||
ر | ر | ||
!22\11, 1015.385 | !22\11, 1015.385 | ||
Line 1,216: | Line 1,287: | ||
|- | |- | ||
|0 | |0 | ||
|Do, Sol | |F/C/G ut | ||
Do, Sol | |||
د, ص | د, ص | ||
|perfect unison | |perfect unison | ||
|0 | |0 | ||
|Do, Sol | |F/C/G ut | ||
Do, Sol | |||
د, ص | د, ص | ||
|perfect fourth | |perfect fourth | ||
|- | |- | ||
| 1 | | 1 | ||
|Mib, Sib | |A/E/B mib | ||
Mib, Sib | |||
صb, مb | صb, مb | ||
|diminished third | |diminished third | ||
| -1 | | -1 | ||
|Re, La | |G/D/A re | ||
Re, La | |||
ر, ل | ر, ل | ||
|perfect second | |perfect second | ||
|- | |- | ||
|2 | |2 | ||
|Reb, Lab | |G/D/A reb | ||
Reb, Lab | |||
رb, لb | رb, لb | ||
|diminished second | |diminished second | ||
| -2 | | -2 | ||
|Mi, Si | |A/E/B mi | ||
Mi, Si | |||
ص, م | ص, م | ||
|perfect third | |perfect third | ||
Line 1,245: | Line 1,322: | ||
|- | |- | ||
|3 | |3 | ||
| | |F/C/G utb | ||
Dob, Solb | |||
دb, صb | دb, صb | ||
| diminished fourth | | diminished fourth | ||
| -3 | | -3 | ||
|Do#, Sol# | |F/C/G ut# | ||
Do#, Sol# | |||
د, #ص# | د, #ص# | ||
|augmented unison (chroma) | |augmented unison (chroma) | ||
|- | |- | ||
|4 | |4 | ||
|Mibb, Sibb | |A/E/B mibb | ||
Mibb, Sibb | |||
مbb, صbb | مbb, صbb | ||
|doubly diminished third | |doubly diminished third | ||
| -4 | | -4 | ||
|Re#, La# | |G/D/A re# | ||
Re#, La# | |||
ر ,# ل# | ر ,# ل# | ||
|augmented second | |augmented second | ||
Line 1,265: | Line 1,346: | ||
The generator chain for this scale is as follows: | The generator chain for this scale is as follows: | ||
{| class="wikitable" | {| class="wikitable" | ||
|A/E/B mibb | |||
|F/C/G utb | |||
|G/D/A reb | |||
|A/E/B mib | |||
|F/C/G ut | |||
|G/D/A re | |||
|A/E/B mi | |||
|F/C/G ut# | |||
|G/D/A re# | |||
|A/E/B mi# | |||
|- | |||
|Mibb | |Mibb | ||
Sibb | Sibb |
Revision as of 04:26, 24 November 2024
2L 1s<perfect fourth>, is a perfect fourth-repeating MOS scale. The notation "<perfect fourth>" means the period of the MOS is a perfect fourth, disambiguating it from octave-repeating 2L 1s.
The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).
In the fourth-repeating version of the diatonic scale, each tone has a perfect fourth above it. The scale has one major chord and two minor chords.
Basic diatonic is in 5ed4/3, which is a very good fourth-based equal tuning similar to 12edo.
Notation
There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4 and a fourth has too few notes for a structure analogous to the major scale, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the genchain harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | ||
---|---|---|---|---|---|---|---|---|---|
Fourth | Seventh | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 | |
Mixolydian | Dorian | ||||||||
F/C/G ut#
Do#, Sol# د#, ص# |
F/C/G ut#
Sol# ص# |
G/D/A re#
Re# ر# |
1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
G/D/A reb
Reb, Lab رb, لb |
G/D/A reb
Lab لb |
A/E/B mib
Mib م |
3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
G/D/A re
Re, La ر, ل |
G/D/A re
La ل |
A/E/B mi
Mi م |
4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
G/D/A re#
Re#, La# ر,# ل# |
G/D/A re#
La# ل# |
A/E/B mi#
Mi# م# |
5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
A/E/B mibb
Mibb, Sibb مbb,تbb |
A/E/B mibb
Sibb تbb |
B/F/C fab
Fab فb |
6\11, 276.923 | 6\13, 232.258 | 2\5, 200 | 4\12, 165.517 | 2\7, 141.176 | 2\9, 109.091 | |
A/E/B mib
Mib, Sib مb,تb |
A/E/B mib
Sib تb |
B/F/C fa
Fa ف |
7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 3\5, 300 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 |
A/E/B mi
Mi, Si م, ت |
A/E/B mi
Si ت |
B/F/C fa#
Fa# ف# |
8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
A/E/B mi#
Mi#, Si# م,#ت# |
A/E/B mi#
Si# ت# |
B/F/C fax
Fax فx |
9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
F/C/G utb
Dob, Solb دb, صb |
B/F/C fab
Dob دb |
C/G/D solb
Solb صb |
10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
F/C/G ut
Do, Sol د, ص |
B/F/C fa
Do د |
C/G/D sol
Sol ص |
11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
F/C/G ut#
Do#, Sol# د#, ص# |
B/F/C fa#
Do# د# |
C/G/D sol#
Sol# ص# |
12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
G/D/A reb
Reb, Lab رb, لb |
C/G/D solb
Reb رb |
D/A/E lab
Lab لb |
14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
G/D/A re
Re, La ر, ل |
C/G/D sol
Re ر |
D/A/E la
La ل |
15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
G/D/A re#
Re#, La# ر,# ل# |
C/G/D sol#
Re# د# |
D/A/E la#
La# ل# |
16\11, 738.462 | 12\8, 757.895 | 20\13, 774.294 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
A/E/B mib
Mib, Sib مb,تb |
D/A/E lab
Mib مb |
E/B/F síb
Sib تb |
18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
A/E/B mi
Mi, Si م, ت |
D/A/E la
Mi م |
E/B/F sí
Si ت |
19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
A/E/B mi#
Mi#, Si# م,#ت# |
D/A/E la#
Mi# م# |
E/B/F sí#
Si# ت# |
20\11, 923.077 | 15\8, 947.378 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
F/C/G utb
Dob, Solb دb, صb |
F/C/G utb
Solb صb |
G/D/A reb
Reb رb |
21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
F/C/G ut
Do, Sol د, ص |
F/C/G ut
Sol ص |
G/D/A re
Re ر |
22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Mahur | Bijou | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
G# | 0#, E# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
Jf, Af | 1b, 1d | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
J, A | 1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
J#, A# | 1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.968 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
Af, Bf | 2b, 2d | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
A, B | 2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
A#, B# | 2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
Bb, Cf | 3b, 3d | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
B, C | 3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
B#, C# | 3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
Cf, Qf | 4b, 4d | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
C, Q | 4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
C#, Q# | 4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
Qf, Df | 5b, 5d | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
Q, D | 5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
Q#, D# | 5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
Df, Sf | 6b, 6d | 21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
D, S | 6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
D#, S# | 6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
Ef | 7b, 7d | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
E | 7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
E# | 7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
Ff | 8b, Gd | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
F | 8, G | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
F# | 8#, G# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
Gf | 9b, Ad | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
G | 9, A | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
G# | 9#, A# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Jf, Af | Xb, Bd | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
J, A | X, B | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
J#, A# | X#, B# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
Af, Bf | Eb, Dd | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
A, B | E, D | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
A#, B# | E#, D# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
Bb, Cf | 0b, Ed | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
B, C | 0, E | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Hyperionic | Subsextal | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
1# | 0# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.636 |
2f | 1f | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.545 | |
2 | 1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.182 |
2# | 1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.818 |
3f | 2f | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.727 | |
3 | 2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.098 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.364 |
3# | 2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
4f | 3f | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.273 | |
4 | 3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.909 |
4# | 3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.545 |
5f | 4f | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.455 | |
5 | 4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.091 |
5# | 4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.727 |
6f | 5f | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.636 | |
6 | 5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.727 |
6# | 5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.909 |
7f | 6f | 21\11, 969.231 | 24\13, 929.032 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.182 | |
7 | 6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.818 |
7# | 6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.455 |
8f | 7f | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.364 | |
8 | 7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
8# | 7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.636 |
9f | 8f | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.545 | |
9 | 8 | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.182 |
9# | 8# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.818 |
Af | 9f | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.091 | |
A | 9 | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.727 |
A# | 9# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.364 |
Bf | Xb | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
B | X | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.909 |
B# | X# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.545 |
Cf | ɛf | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.455 | |
C | ɛ | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.090 |
C# | ɛ# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.727 |
Df | Af | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
D | A | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.636 |
D# | A# | 45\11, 2076.923 | 33\8, 2084.211 | 54\13, 2090.323 | 21\5, 2100 | 51\12, 2110.345 | 30\7, 2117.647 | 39\9, 2127.273 |
Ef | Bf | 47\11, 2169.231 | 34\8, 2147.368 | 55\13, 2129.032 | 50\12, 2068.966 | 29\7, 2047.059 | 37\9, 2018.182 | |
E | B | 48\11, 2215.385 | 35\8, 2210.526 | 57\13, 2206.452 | 22\5, 2200 | 53\12, 2193.103 | 31\7, 2188.235 | 40\9, 2181.818 |
E# | B# | 49\11, 2261.538 | 36\8, 2273.684 | 59\13, 2283.871 | 23\5, 2300 | 56\12, 2317.241 | 33\7, 2329.412 | 43\9, 2345.455 |
Ff | Cf | 51\11, 2353.846 | 37\8, 2336.842 | 61\13, 2322.581 | 55\12, 2275.864 | 32\7, 2258.824 | 41\9, 2236.364 | |
F | C | 52\11, 2400 | 38\8, 2400 | 62\13, 2400 | 24\5, 2400 | 58\12, 2400 | 34\7, 2400 | 44\9, 2400 |
F# | C# | 53\11, 2446.154 | 39\8, 2463.158 | 64\13, 2477.419 | 25\5, 2500 | 61\12, 2524.138 | 36\7, 2541.176 | 47/9, 2563.636 |
1f | Df | 54\11, 2492.308 | 63\13, 2438.710 | 24\5, 2400 | 57\12, 2358.621 | 33\7, 2329.412 | 42\9, 2390.909 | |
1 | D | 55\11, 2538.462 | 40\8, 2526.316 | 65\13, 2516.129 | 25\5, 2500 | 60\12, 2482.759 | 35\7, 2470.588 | 45\9, 2454.545 |
1# | D# | 56\11, 2584.615 | 41\8, 2589.474 | 67\13, 2593.548 | 26\5, 2600 | 63\12, 2606.897 | 37\7, 2611.765 | 48\9, 2618.182 |
2f | Ef | 58\11, 2676.923 | 42\8, 2652.632 | 69\13, 2670.968 | 62\12, 2565.517 | 36\7, 2541.176 | 46\9, 2509.091 | |
2 | E | 59\11, 2723.077 | 43\8, 2715.789 | 70\13, 2709.677 | 27\5, 2700 | 65\12, 2689.655 | 38\7, 2682.353 | 49\9, 2672.727 |
2# | E# | 60\11, 2769.231 | 44\8, 2778.947 | 72\13, 2787.097 | 28\5, 2800 | 68\12, 2813.793 | 40\7, 2823.529 | 52\9, 2836.364 |
3f | Ff | 62\11, 2861.538 | 45\8, 2842.105 | 73\13, 2825.806 | 67\12, 2772.034 | 39\7, 2752.941 | 50\9, 2727.273 | |
3 | F | 63\11, 2907.692 | 46\8, 2905.263 | 75\13, 2903.226 | 29\5, 2900 | 70\12, 2896.552 | 41\7, 2894.118 | 53\9, 2890.909 |
3# | F# | 64\11, 2953.846 | 47\8, 2968.421 | 77\13, 2980.645 | 30\5, 3000 | 73\12, 3020.690 | 43\7, 3035.294 | 55\9, 3000 |
4f | 0f | 65\11, 3000 | 76\13, 2941.935 | 29\5, 2900 | 69\29, 2855.172 | 40\7, 2823.529 | 52\9, 2836.364 | |
4 | 0 | 66\11, 3046.154 | 48\8, 3031.579 | 78\13, 3019.355 | 30\5, 3000 | 72\12, 2979.310 | 42\7, 2964.706 | 54\9, 2945.455 |
Intervals
Generators | Fourth notation | Interval category name | Generators | Notation of 4/3 inverse | Interval category name |
---|---|---|---|---|---|
The 3-note MOS has the following intervals (from some root): | |||||
0 | F/C/G ut
Do, Sol د, ص |
perfect unison | 0 | F/C/G ut
Do, Sol د, ص |
perfect fourth |
1 | A/E/B mib
Mib, Sib صb, مb |
diminished third | -1 | G/D/A re
Re, La ر, ل |
perfect second |
2 | G/D/A reb
Reb, Lab رb, لb |
diminished second | -2 | A/E/B mi
Mi, Si ص, م |
perfect third |
The chromatic 5-note MOS also has the following intervals (from some root): | |||||
3 | F/C/G utb
Dob, Solb دb, صb |
diminished fourth | -3 | F/C/G ut#
Do#, Sol# د, #ص# |
augmented unison (chroma) |
4 | A/E/B mibb
Mibb, Sibb مbb, صbb |
doubly diminished third | -4 | G/D/A re#
Re#, La# ر ,# ل# |
augmented second |
Genchain
The generator chain for this scale is as follows:
A/E/B mibb | F/C/G utb | G/D/A reb | A/E/B mib | F/C/G ut | G/D/A re | A/E/B mi | F/C/G ut# | G/D/A re# | A/E/B mi# |
Mibb
Sibb |
Dob
Solb |
Reb
Lab |
Mib
Sib |
Do
Sol |
Re
La |
Mi
Si |
Do#
Sol# |
Re#
La# |
Mi#
Si# |
مbb
تbb |
دb
صb |
رb
لb |
مb
تb |
د
ص |
ر
ل |
م
ت |
د#
ص# |
ر#
ل# |
م#
ت# |
dd3 | d4 | d2 | d3 | P1 | P2 | P3 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fourth:
Mode | Scale | UDP | Interval type | |
---|---|---|---|---|
name | pattern | notation | 2nd | 3rd |
Major | LLs | 2|0 | P | P |
Minor | LsL | 1|1 | P | d |
Phrygian | sLL | 0|2 | d | d |
Temperaments
The most basic rank-2 temperament interpretation of diatonic is Mahuric. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled root-2g-(p+g)
(p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations.
Mahuric-Meantone
Subgroup: 4/3.5/4.3/2
POL2 generator: ~9/8 = 193.6725¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 8ed4/3, 13ed4/3)
Mahuric-Superpyth
Subgroup: 4/3.9/7.3/2
POL2 generator: ~8/7 = 216.7325¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3)
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments |
---|---|---|---|---|---|
1\3 | 171.429 | 1 | 1 | 1.000 | Equalised |
6\17 | 180.000 | 6 | 5 | 1.200 | |
5\14 | 181.818 | 5 | 4 | 1.250 | |
14\39 | 182.609 | 14 | 11 | 1.273 | |
9\25 | 183.051 | 9 | 7 | 1.286 | |
4\11 | 184.615 | 4 | 3 | 1.333 | |
11\30 | 185.915 | 11 | 8 | 1.375 | |
7\19 | 186.667 | 7 | 5 | 1.400 | |
10\27 | 187.500 | 10 | 7 | 1.429 | |
13\35 | 187.952 | 13 | 9 | 1.444 | |
16\43 | 188.253 | 16 | 11 | 1.4545 | |
3\8 | 189.474 | 3 | 2 | 1.500 | Mahuric-Meantone starts here |
14\37 | 190.909 | 14 | 9 | 1.556 | |
11\29 | 191.304 | 11 | 7 | 1.571 | |
8\21 | 192.000 | 8 | 5 | 1.600 | |
5\13 | 193.548 | 5 | 3 | 1.667 | |
12\31 | 194.595 | 12 | 7 | 1.714 | |
7\18 | 195.348 | 7 | 4 | 1.750 | |
9\23 | 196.364 | 9 | 5 | 1.800 | |
11\28 | 197.015 | 11 | 6 | 1.833 | |
13\33 | 197.468 | 13 | 7 | 1.857 | |
15\38 | 197.802 | 15 | 8 | 1.875 | |
17\43 | 198.058 | 17 | 9 | 1.889 | |
19\48 | 198.261 | 19 | 10 | 1.900 | |
21\53 | 198.425 | 21 | 11 | 1.909 | |
23\58 | 198.561 | 23 | 12 | 1.917 | |
25\63 | 198.675 | 25 | 13 | 1.923 | |
27\68 | 198.773 | 27 | 14 | 1.929 | |
29\73 | 198.857 | 29 | 15 | 1.933 | |
31\78 | 198.930 | 31 | 16 | 1.9375 | |
33\83 | 198.995 | 33 | 17 | 1.941 | |
35\88 | 199.052 | 35 | 18 | 1.944 | |
2\5 | 200.000 | 2 | 1 | 2.000 | Mahuric-Meantone ends, Mahuric-Pythagorean begins |
17\42 | 201.980 | 17 | 8 | 2.125 | |
15\37 | 202.247 | 15 | 7 | 2.143 | |
13\32 | 202.597 | 13 | 6 | 2.167 | |
11\27 | 203.077 | 11 | 5 | 2.200 | |
9\22 | 203.774 | 9 | 4 | 2.250 | |
7\17 | 204.878 | 7 | 3 | 2.333 | |
12\29 | 205.714 | 12 | 5 | 2.400 | |
5\12 | 206.897 | 5 | 2 | 2.500 | Mahuric-Neogothic heartland is from here… |
18\43 | 207.693 | 18 | 7 | 2.571 | |
13\31 | 208.000 | 13 | 5 | 2.600 | |
8\19 | 208.696 | 8 | 3 | 2.667 | …to here |
11\26 | 209.524 | 11 | 4 | 2.750 | |
14\33 | 210.000 | 14 | 5 | 2.800 | |
3\7 | 211.755 | 3 | 1 | 3.000 | Mahuric-Pythagorean ends, Mahuric-Superpyth begins |
22\51 | 212.903 | 22 | 7 | 3.143 | |
19\44 | 213.084 | 19 | 6 | 3.167 | |
16\37 | 213.333 | 16 | 5 | 3.200 | |
13\30 | 213.699 | 13 | 4 | 3.250 | |
10\23 | 214.286 | 10 | 3 | 3.333 | |
7\16 | 215.385 | 7 | 2 | 3.500 | |
11\25 | 216.393 | 11 | 3 | 3.667 | |
15\34 | 216.867 | 15 | 4 | 3.750 | |
19\43 | 217.143 | 19 | 5 | 3.800 | |
4\9 | 218.182 | 4 | 1 | 4.000 | |
13\29 | 219.718 | 13 | 3 | 4.333 | |
9\20 | 220.408 | 9 | 2 | 4.500 | |
14\31 | 221.053 | 14 | 3 | 4.667 | |
5\11 | 222.222 | 5 | 1 | 5.000 | Mahuric-Superpyth ends |
11\24 | 223.728 | 11 | 2 | 5.500 | |
17\37 | 224.176 | 17 | 3 | 5.667 | |
6\13 | 225.000 | 6 | 1 | 6.000 | |
1\2 | 240.000 | 1 | 0 | → inf | Paucitonic |
See also
2L 1s (4/3-equivalent) - idealized tuning
4L 2s (7/4-equivalent) - Mixolydian and Dorian hexatonic Archytas temperament
4L 2s (39/22-equivalent) - Mixolydian and Dorian hexatonic Neogothic temperament
4L 2s (Komornik–Loreti constant-equivalent) - Mixolydian and Dorian hexatonic Komornik–Loreti temperament
4L 2s (9/5-equivalent) - Mixolydian and Dorian hexatonic Meantone temperament
6L 3s (7/3-equivalent) - Mahuric-Archytas temperament
6L 3s (26/11-equivalent) - Mahuric-Neogothic temperament
6L 3s (12/5-equivalent) - Mahuric-Meantone temperament
8L 4s (28/9-equivalent) - Bijou Archytas temperament
8L 4s (22/7-equivalent) and 8L 4s ([math]π[/math]-equivalent) - Bijou Neogothic temperament
8L 4s (16/5-equivalent) - Bijou Meantone temperament
10L 5s (112/27-equivalent) - Hyperionic Archytas temperament
10L 5s (88/21-equivalent) - Hyperionic Neogothic temperament
10L 5s (32/15-equivalent) - Hyperionic Meantone temperament
10L 5s (30/7-equivalent) - Hyperionic septimal Meantone temperament
12L 6s (16/3-equivalent) - Warped Pythagorean Subsextal temperament
12L 6s (343/64-equivalent) - 1/2 comma Archytas Subsextal temperament]
12L 6s (11/2-equivalent) - Low undecimal Subsextal temperament
12L 6s (448/81-equivalent) - 1/6 comma Archytas Subsextal temperament
12L 6s (4096/729-equivalent) - Pythagorean Subsextal temperament
12L 6s (28/5-equivalent) - Low septimal (meantone) Subsextal temperament
12L 6s (256/45-equivalent) - 1/6 comma meantone Subsextal temperament
12L 6s (40/7-equivalent) - High septimal Subsextal temperament
12L 6s (64/11-equivalent) - High undecimal Subsextal temperament
12L 6s (729/125-equivalent) - 1/2 comma meantone Subsextal temperament