137edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>FREEZE
No edit summary
Xenwolf (talk | contribs)
m cat rename
Line 5: Line 5:
[[File:137edo_MOS_031_demo_correction.png|alt=137edo_MOS_031_demo_correction.png|137edo_MOS_031_demo_correction.png]]
[[File:137edo_MOS_031_demo_correction.png|alt=137edo_MOS_031_demo_correction.png|137edo_MOS_031_demo_correction.png]]


[[:File:137edo_MOS_031.svg|137edo_MOS_031.svg]]     [[Category:edo]]
[[:File:137edo_MOS_031.svg|137edo_MOS_031.svg]]
[[Category:nuwell]]
 
[[Category:orwell]]
[[Category:Edo]]
[[Category:prime_edo]]
[[Category:Nuwell]]
[[Category:semicomma]]
[[Category:Orwell]]
[[Category:Prime EDO]]
[[Category:Semicomma]]

Revision as of 10:19, 2 November 2018

The 137 equal division divides the octave into 137 equal parts of 8.759 cents each. It is the optimal patent val for 7-limit orwell temperament and for the planar temperament tempering out 2430/2401. It tempers out 2109375/2097152 (the semicomma) in the 5-limit; 225/224 and 1728/1715 in the 7-limit; 243/242 in the 11-limit; 351/350 in the 13-limit; 375/374 and 442/441 in the 17-limit; and 324/323 and 495/494 in the 19-limit. Since it is the 33rd prime number, 137edo has no proper divisors aside from 1.

A diagram of 7-limit Orwell based on the 31\137edo generator:

137edo_MOS_031_demo_correction.png

137edo_MOS_031.svg