Minimal consistent EDOs: Difference between revisions
ArrowHead294 (talk | contribs) No edit summary |
Undo. Tag: Undo |
||
Line 1: | Line 1: | ||
An [[edo]] ''N'' is ''[[consistent]]'' with respect to the [[Odd limit|''q''-odd-limit]] if the closest approximations of the odd harmonics of the q-odd-limit in that edo also give the closest approximations of all the differences between these odd harmonics. It is ''[[distinctly consistent]]'' if every one of those closest approximations is a distinct value, and ''purely consistent'' if its [[relative interval error|relative errors]] on odd harmonics up to and including ''q'' never exceed 25%. Below is a table of the smallest consistent, and the smallest distinctly consistent, edo for every odd number up to 135. | An [[edo]] ''N'' is ''[[consistent]]'' with respect to the [[Odd limit|''q''-odd-limit]] if the closest approximations of the odd harmonics of the q-odd-limit in that edo also give the closest approximations of all the differences between these odd harmonics. It is ''[[distinctly consistent]]'' if every one of those closest approximations is a distinct value, and ''purely consistent'' if its [[relative interval error|relative errors]] on odd harmonics up to and including ''q'' never exceed 25%. Below is a table of the smallest consistent, and the smallest distinctly consistent, edo for every odd number up to 135. | ||
{| class="wikitable" | {| class="wikitable right-all" | ||
|- | |||
! Odd<br>limit | ! Odd<br>limit | ||
! Smallest<br>consistent edo* | ! Smallest<br>consistent edo* | ||
Line 8: | Line 9: | ||
|- | |- | ||
| 1 | | 1 | ||
| 1 | |||
| 1 | | 1 | ||
| 1 | | 1 | ||
|- | |- | ||
| 3 | | 3 | ||
| 1 | |||
| 3 | | 3 | ||
| 2 | | 2 | ||
Line 29: | Line 31: | ||
| 5 | | 5 | ||
| 41 | | 41 | ||
| 41 | |||
|- | |- | ||
| 11 | | 11 | ||
| 22 | | 22 | ||
| 58 | | 58 | ||
| 41 | |||
|- | |- | ||
| 13 | | 13 | ||
Line 48: | Line 51: | ||
| 58 | | 58 | ||
| 149 | | 149 | ||
| 311 | |||
|- | |- | ||
| 19 | | 19 | ||
| 80 | | 80 | ||
| 217 | | 217 | ||
| 311 | |||
|- | |- | ||
| 21 | | 21 | ||
| 94 | |||
| | | 282 | ||
| 311 | |||
|- | |- | ||
| 23 | | 23 | ||
| 94 | |||
| 282 | |||
| 311 | |||
|- | |- | ||
| 25 | | 25 | ||
| 282 | |||
| | | 388 | ||
| 311 | |||
|- | |- | ||
| 27 | | 27 | ||
| 282 | |||
| 388 | |||
| 311 | |||
|- | |- | ||
| 29 | | 29 | ||
| 282 | |||
| 1323 | | 1323 | ||
| 311 | |||
|- | |- | ||
| 31 | | 31 | ||
| 311 | |||
| | | 1600 | ||
| 311 | |||
|- | |- | ||
| 33 | | 33 | ||
| 311 | |||
| 1600 | |||
| 311 | |||
|- | |- | ||
| 35 | | 35 | ||
| 311 | |||
| 1600 | |||
| 311 | |||
|- | |- | ||
| 37 | | 37 | ||
| 311 | |||
| 1600 | |||
| 311 | |||
|- | |- | ||
| 39 | | 39 | ||
| | | 311 | ||
| 2554 | |||
| 311 | |||
|- | |- | ||
| 41 | | 41 | ||
| 311 | |||
| 2554 | |||
| 311 | |||
|- | |- | ||
| 43 | | 43 | ||
| 17461 | |||
| 17461 | |||
| 20567 | |||
|- | |- | ||
| 45 | | 45 | ||
| 17461 | |||
| 17461 | |||
| 20567 | |||
|- | |- | ||
| 47 | | 47 | ||
| | | 20567 | ||
| 20567 | |||
| 20567 | |||
|- | |- | ||
| 49 | | 49 | ||
| | | 20567 | ||
| 20567 | |||
| 459944 | |||
|- | |- | ||
| 51 | | 51 | ||
| 20567 | |||
| 20567 | |||
| 459944 | |||
|- | |- | ||
| 53 | | 53 | ||
| | | 20567 | ||
| 20567 | |||
| 1705229 | |||
|- | |- | ||
| 55 | | 55 | ||
| 20567 | |||
| 20567 | |||
| 1705229 | |||
|- | |- | ||
| 57 | | 57 | ||
| 20567 | |||
| 20567 | |||
| 1705229 | |||
|- | |- | ||
| 59 | | 59 | ||
| 253389 | | 253389 | ||
| 253389 | | 253389 | ||
| 3159811 | |||
|- | |- | ||
| 61 | | 61 | ||
| | | 625534 | ||
| | | 625534 | ||
| 3159811 | |||
|- | |- | ||
| 63 | | 63 | ||
| 625534 | |||
| 625534 | |||
| 3159811 | |||
|- | |- | ||
| 65 | | 65 | ||
| 625534 | |||
| 625534 | |||
| 3159811 | |||
|- | |- | ||
| 67 | | 67 | ||
| 625534 | |||
| 625534 | |||
| 7317929 | | 7317929 | ||
|- | |- | ||
| 69 | | 69 | ||
| 759630 | |||
| 759630 | |||
| 8595351 | |||
|- | |- | ||
| 71 | | 71 | ||
| 759630 | |||
| 759630 | |||
| 8595351 | |||
|- | |- | ||
| 73 | | 73 | ||
| 759630 | |||
| 759630 | |||
| 27783092 | | 27783092 | ||
|- | |- | ||
| 75 | | 75 | ||
| 2157429 | |||
| 2157429 | |||
| 34531581 | |||
|- | |- | ||
| 77 | | 77 | ||
| 2157429 | |||
| 2157429 | |||
| 34531581 | |||
|- | |- | ||
| 79 | | 79 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 81 | | 81 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 83 | | 83 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 85 | | 85 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 87 | | 87 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 89 | | 89 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 91 | | 91 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 93 | | 93 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 95 | | 95 | ||
| 2901533 | |||
| 2901533 | |||
| 50203972 | |||
|- | |- | ||
| 97 | | 97 | ||
| | | 2901533 | ||
| 2901533 | |||
| 1297643131 | |||
|- | |- | ||
| 99 | | 99 | ||
| 2901533 | |||
| 2901533 | |||
| 1297643131 | |||
|- | |- | ||
| 101 | | 101 | ||
| | | 2901533 | ||
| 2901533 | |||
| 3888109922 | |||
|- | |- | ||
| 103 | | 103 | ||
| 2901533 | |||
| 2901533 | |||
| 3888109922 | |||
|- | |- | ||
| 105 | | 105 | ||
| 2901533 | |||
| 2901533 | |||
| 3888109922 | |||
|- | |- | ||
| 107 | | 107 | ||
| 2901533 | |||
| 2901533 | |||
| 13805152233 | | 13805152233 | ||
|- | |- | ||
| 109 | | 109 | ||
| | | 2901533 | ||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 111 | | 111 | ||
| 2901533 | |||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 113 | | 113 | ||
| 2901533 | |||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 115 | | 115 | ||
| 2901533 | |||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 117 | | 117 | ||
| 2901533 | |||
| 2901533 | |||
| 27218556026 | |||
|- | |- | ||
| 119 | | 119 | ||
| | | 2901533 | ||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 121 | | 121 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 123 | | 123 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 125 | | 125 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 127 | | 127 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 129 | | 129 | ||
| 2901533 | |||
| 2901533 | |||
| 42586208631 | |||
|- | |- | ||
| 131 | | 131 | ||
| | | 2901533 | ||
| 2901533 | |||
| 93678217813 | |||
|- | |- | ||
| 133 | | 133 | ||
| | | 70910024 | ||
| | | 70910024 | ||
| 93678217813 | |||
|- | |- | ||
| 135 | | 135 | ||
| 70910024 | |||
| 70910024 | |||
| 93678217813*** | |||
|} | |} | ||
<nowiki>*</nowiki> apart from 0edo | <nowiki>*</nowiki> apart from 0edo |
Revision as of 09:01, 22 June 2024
An edo N is consistent with respect to the q-odd-limit if the closest approximations of the odd harmonics of the q-odd-limit in that edo also give the closest approximations of all the differences between these odd harmonics. It is distinctly consistent if every one of those closest approximations is a distinct value, and purely consistent if its relative errors on odd harmonics up to and including q never exceed 25%. Below is a table of the smallest consistent, and the smallest distinctly consistent, edo for every odd number up to 135.
Odd limit |
Smallest consistent edo* |
Smallest distinctly consistent edo |
Smallest purely consistent** edo |
---|---|---|---|
1 | 1 | 1 | 1 |
3 | 1 | 3 | 2 |
5 | 3 | 9 | 3 |
7 | 4 | 27 | 10 |
9 | 5 | 41 | 41 |
11 | 22 | 58 | 41 |
13 | 26 | 87 | 46 |
15 | 29 | 111 | 87 |
17 | 58 | 149 | 311 |
19 | 80 | 217 | 311 |
21 | 94 | 282 | 311 |
23 | 94 | 282 | 311 |
25 | 282 | 388 | 311 |
27 | 282 | 388 | 311 |
29 | 282 | 1323 | 311 |
31 | 311 | 1600 | 311 |
33 | 311 | 1600 | 311 |
35 | 311 | 1600 | 311 |
37 | 311 | 1600 | 311 |
39 | 311 | 2554 | 311 |
41 | 311 | 2554 | 311 |
43 | 17461 | 17461 | 20567 |
45 | 17461 | 17461 | 20567 |
47 | 20567 | 20567 | 20567 |
49 | 20567 | 20567 | 459944 |
51 | 20567 | 20567 | 459944 |
53 | 20567 | 20567 | 1705229 |
55 | 20567 | 20567 | 1705229 |
57 | 20567 | 20567 | 1705229 |
59 | 253389 | 253389 | 3159811 |
61 | 625534 | 625534 | 3159811 |
63 | 625534 | 625534 | 3159811 |
65 | 625534 | 625534 | 3159811 |
67 | 625534 | 625534 | 7317929 |
69 | 759630 | 759630 | 8595351 |
71 | 759630 | 759630 | 8595351 |
73 | 759630 | 759630 | 27783092 |
75 | 2157429 | 2157429 | 34531581 |
77 | 2157429 | 2157429 | 34531581 |
79 | 2901533 | 2901533 | 50203972 |
81 | 2901533 | 2901533 | 50203972 |
83 | 2901533 | 2901533 | 50203972 |
85 | 2901533 | 2901533 | 50203972 |
87 | 2901533 | 2901533 | 50203972 |
89 | 2901533 | 2901533 | 50203972 |
91 | 2901533 | 2901533 | 50203972 |
93 | 2901533 | 2901533 | 50203972 |
95 | 2901533 | 2901533 | 50203972 |
97 | 2901533 | 2901533 | 1297643131 |
99 | 2901533 | 2901533 | 1297643131 |
101 | 2901533 | 2901533 | 3888109922 |
103 | 2901533 | 2901533 | 3888109922 |
105 | 2901533 | 2901533 | 3888109922 |
107 | 2901533 | 2901533 | 13805152233 |
109 | 2901533 | 2901533 | 27218556026 |
111 | 2901533 | 2901533 | 27218556026 |
113 | 2901533 | 2901533 | 27218556026 |
115 | 2901533 | 2901533 | 27218556026 |
117 | 2901533 | 2901533 | 27218556026 |
119 | 2901533 | 2901533 | 42586208631 |
121 | 2901533 | 2901533 | 42586208631 |
123 | 2901533 | 2901533 | 42586208631 |
125 | 2901533 | 2901533 | 42586208631 |
127 | 2901533 | 2901533 | 42586208631 |
129 | 2901533 | 2901533 | 42586208631 |
131 | 2901533 | 2901533 | 93678217813 |
133 | 70910024 | 70910024 | 93678217813 |
135 | 70910024 | 70910024 | 93678217813*** |
* apart from 0edo
** purely consistent is an [idiosyncratic term]
*** purely consistent to the 137-odd-limit
The last entry, 70910024edo, is consistent up to the 135-odd-limit. The next edo is 5407372813, reported to be consistent to the 155-odd-limit.
OEIS integer sequences links
- OEIS: Equal divisions of the octave with progressively increasing consistency levels (OEIS)
- OEIS: Equal divisions of the octave with progressively increasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit (OEIS)
- OEIS: Equal divisions of the octave with nondecreasing consistency levels. (OEIS)
- OEIS: Equal divisions of the octave with nondecreasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit (OEIS)