992edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
A more accurate description would prolly not label it as "decent" in the 19-limit
+subsets and supersets
Line 8: Line 8:
=== Odd harmonics ===
=== Odd harmonics ===
{{Harmonics in equal|992}}
{{Harmonics in equal|992}}
=== Subsets and supersets ===
Since 992 factors into {{factorization|992}}, 992edo has subset edos {{EDOs| 2, 4, 8, 16, 31, 32, 62, 124, 248, and 496 }}.

Revision as of 11:12, 2 November 2023

← 991edo 992edo 993edo →
Prime factorization 25 × 31
Step size 1.20968 ¢ 
Fifth 580\992 (701.613 ¢) (→ 145\248)
Semitones (A1:m2) 92:76 (111.3 ¢ : 91.94 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

992edo is a decent 7-limit system, although it is inconsistent in the 9-odd-limit. In the 13-limit the 992def val 992 1572 2303 2784 3431 3670], the 992ef val 992 1572 2303 2785 3431 3670] as well as the patent val 992 1572 2303 2785 3432 3671] are worth considering.

The equal temperament supports windrose in the 7-limit.

Odd harmonics

Approximation of odd harmonics in 992edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.342 -0.427 +0.126 +0.525 +0.295 +0.198 +0.441 +0.287 +0.068 -0.216 -0.452
Relative (%) -28.3 -35.3 +10.4 +43.4 +24.4 +16.4 +36.5 +23.7 +5.6 -17.9 -37.3
Steps
(reduced)
1572
(580)
2303
(319)
2785
(801)
3145
(169)
3432
(456)
3671
(695)
3876
(900)
4055
(87)
4214
(246)
4357
(389)
4487
(519)

Subsets and supersets

Since 992 factors into 25 × 31, 992edo has subset edos 2, 4, 8, 16, 31, 32, 62, 124, 248, and 496.