161edt: Difference between revisions
Jump to navigation
Jump to search
m Marked page as stub |
m Intro inter harm |
||
Line 1: | Line 1: | ||
{{Stub}} | {{Stub}} | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Intervals == | |||
{{Interval table}} | |||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 161 | |||
| num = 3 | |||
| denom = 1 | |||
}} | |||
{{Harmonics in equal | |||
| steps = 161 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
}} |
Revision as of 09:08, 5 October 2024
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 160edt | 161edt | 162edt → |
161 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 161edt or 161ed3), is a nonoctave tuning system that divides the interval of 3/1 into 161 equal parts of about 11.8 ¢ each. Each step represents a frequency ratio of 31/161, or the 161st root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 11.8 | 8.1 | |
2 | 23.6 | 16.1 | |
3 | 35.4 | 24.2 | |
4 | 47.3 | 32.3 | |
5 | 59.1 | 40.4 | |
6 | 70.9 | 48.4 | 49/47 |
7 | 82.7 | 56.5 | 43/41 |
8 | 94.5 | 64.6 | 19/18 |
9 | 106.3 | 72.7 | |
10 | 118.1 | 80.7 | 15/14 |
11 | 129.9 | 88.8 | 55/51 |
12 | 141.8 | 96.9 | 51/47 |
13 | 153.6 | 105 | 47/43 |
14 | 165.4 | 113 | |
15 | 177.2 | 121.1 | 41/37 |
16 | 189 | 129.2 | |
17 | 200.8 | 137.3 | 55/49 |
18 | 212.6 | 145.3 | 26/23 |
19 | 224.5 | 153.4 | 33/29 |
20 | 236.3 | 161.5 | 39/34, 47/41 |
21 | 248.1 | 169.6 | 15/13 |
22 | 259.9 | 177.6 | 43/37 |
23 | 271.7 | 185.7 | 55/47 |
24 | 283.5 | 193.8 | |
25 | 295.3 | 201.9 | 51/43 |
26 | 307.1 | 209.9 | 37/31 |
27 | 319 | 218 | |
28 | 330.8 | 226.1 | 23/19 |
29 | 342.6 | 234.2 | |
30 | 354.4 | 242.2 | 27/22 |
31 | 366.2 | 250.3 | 21/17 |
32 | 378 | 258.4 | 51/41 |
33 | 389.8 | 266.5 | |
34 | 401.7 | 274.5 | |
35 | 413.5 | 282.6 | 47/37 |
36 | 425.3 | 290.7 | 23/18, 55/43 |
37 | 437.1 | 298.8 | |
38 | 448.9 | 306.8 | 35/27, 57/44 |
39 | 460.7 | 314.9 | 30/23 |
40 | 472.5 | 323 | |
41 | 484.3 | 331.1 | 41/31, 45/34 |
42 | 496.2 | 339.1 | |
43 | 508 | 347.2 | 55/41 |
44 | 519.8 | 355.3 | |
45 | 531.6 | 363.4 | 34/25 |
46 | 543.4 | 371.4 | 26/19 |
47 | 555.2 | 379.5 | 51/37 |
48 | 567 | 387.6 | 43/31 |
49 | 578.9 | 395.7 | |
50 | 590.7 | 403.7 | |
51 | 602.5 | 411.8 | |
52 | 614.3 | 419.9 | |
53 | 626.1 | 428 | |
54 | 637.9 | 436 | 13/9 |
55 | 649.7 | 444.1 | |
56 | 661.5 | 452.2 | |
57 | 673.4 | 460.2 | 31/21 |
58 | 685.2 | 468.3 | 49/33, 55/37 |
59 | 697 | 476.4 | |
60 | 708.8 | 484.5 | |
61 | 720.6 | 492.5 | 47/31 |
62 | 732.4 | 500.6 | |
63 | 744.2 | 508.7 | |
64 | 756.1 | 516.8 | |
65 | 767.9 | 524.8 | |
66 | 779.7 | 532.9 | |
67 | 791.5 | 541 | 30/19, 49/31 |
68 | 803.3 | 549.1 | 35/22 |
69 | 815.1 | 557.1 | |
70 | 826.9 | 565.2 | |
71 | 838.8 | 573.3 | |
72 | 850.6 | 581.4 | |
73 | 862.4 | 589.4 | 51/31 |
74 | 874.2 | 597.5 | 58/35 |
75 | 886 | 605.6 | |
76 | 897.8 | 613.7 | 42/25 |
77 | 909.6 | 621.7 | 22/13 |
78 | 921.4 | 629.8 | |
79 | 933.3 | 637.9 | |
80 | 945.1 | 646 | |
81 | 956.9 | 654 | |
82 | 968.7 | 662.1 | |
83 | 980.5 | 670.2 | 37/21 |
84 | 992.3 | 678.3 | 39/22, 55/31 |
85 | 1004.1 | 686.3 | 25/14 |
86 | 1016 | 694.4 | |
87 | 1027.8 | 702.5 | |
88 | 1039.6 | 710.6 | 31/17 |
89 | 1051.4 | 718.6 | |
90 | 1063.2 | 726.7 | |
91 | 1075 | 734.8 | |
92 | 1086.8 | 742.9 | |
93 | 1098.6 | 750.9 | |
94 | 1110.5 | 759 | 19/10 |
95 | 1122.3 | 767.1 | 44/23 |
96 | 1134.1 | 775.2 | |
97 | 1145.9 | 783.2 | |
98 | 1157.7 | 791.3 | 41/21 |
99 | 1169.5 | 799.4 | |
100 | 1181.3 | 807.5 | |
101 | 1193.2 | 815.5 | |
102 | 1205 | 823.6 | |
103 | 1216.8 | 831.7 | |
104 | 1228.6 | 839.8 | |
105 | 1240.4 | 847.8 | 43/21 |
106 | 1252.2 | 855.9 | |
107 | 1264 | 864 | 27/13 |
108 | 1275.8 | 872 | |
109 | 1287.7 | 880.1 | |
110 | 1299.5 | 888.2 | |
111 | 1311.3 | 896.3 | |
112 | 1323.1 | 904.3 | 58/27 |
113 | 1334.9 | 912.4 | |
114 | 1346.7 | 920.5 | 37/17 |
115 | 1358.5 | 928.6 | 57/26 |
116 | 1370.4 | 936.6 | |
117 | 1382.2 | 944.7 | |
118 | 1394 | 952.8 | 47/21 |
119 | 1405.8 | 960.9 | |
120 | 1417.6 | 968.9 | 34/15 |
121 | 1429.4 | 977 | |
122 | 1441.2 | 985.1 | 23/10 |
123 | 1453 | 993.2 | 44/19 |
124 | 1464.9 | 1001.2 | |
125 | 1476.7 | 1009.3 | 54/23 |
126 | 1488.5 | 1017.4 | |
127 | 1500.3 | 1025.5 | |
128 | 1512.1 | 1033.5 | |
129 | 1523.9 | 1041.6 | 41/17 |
130 | 1535.7 | 1049.7 | 17/7 |
131 | 1547.6 | 1057.8 | 22/9 |
132 | 1559.4 | 1065.8 | |
133 | 1571.2 | 1073.9 | 57/23 |
134 | 1583 | 1082 | |
135 | 1594.8 | 1090.1 | |
136 | 1606.6 | 1098.1 | 43/17 |
137 | 1618.4 | 1106.2 | |
138 | 1630.2 | 1114.3 | |
139 | 1642.1 | 1122.4 | |
140 | 1653.9 | 1130.4 | 13/5 |
141 | 1665.7 | 1138.5 | 34/13, 55/21 |
142 | 1677.5 | 1146.6 | 29/11 |
143 | 1689.3 | 1154.7 | |
144 | 1701.1 | 1162.7 | |
145 | 1712.9 | 1170.8 | |
146 | 1724.8 | 1178.9 | |
147 | 1736.6 | 1187 | |
148 | 1748.4 | 1195 | |
149 | 1760.2 | 1203.1 | 47/17, 58/21 |
150 | 1772 | 1211.2 | |
151 | 1783.8 | 1219.3 | 14/5 |
152 | 1795.6 | 1227.3 | |
153 | 1807.4 | 1235.4 | 54/19 |
154 | 1819.3 | 1243.5 | |
155 | 1831.1 | 1251.6 | |
156 | 1842.9 | 1259.6 | |
157 | 1854.7 | 1267.7 | |
158 | 1866.5 | 1275.8 | |
159 | 1878.3 | 1283.9 | |
160 | 1890.1 | 1291.9 | |
161 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.97 | +0.00 | -1.88 | +1.65 | +4.97 | -2.01 | +3.08 | +0.00 | -5.20 | -4.82 | -1.88 |
Relative (%) | +42.0 | +0.0 | -15.9 | +13.9 | +42.0 | -17.0 | +26.1 | +0.0 | -44.0 | -40.8 | -15.9 | |
Steps (reduced) |
102 (102) |
161 (0) |
203 (42) |
236 (75) |
263 (102) |
285 (124) |
305 (144) |
322 (0) |
337 (15) |
351 (29) |
364 (42) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.31 | +2.95 | +1.65 | -3.77 | -2.40 | +4.97 | +5.87 | -0.24 | -2.01 | +0.15 | +5.88 |
Relative (%) | +11.0 | +25.0 | +13.9 | -31.9 | -20.3 | +42.0 | +49.7 | -2.0 | -17.0 | +1.2 | +49.8 | |
Steps (reduced) |
376 (54) |
387 (65) |
397 (75) |
406 (84) |
415 (93) |
424 (102) |
432 (110) |
439 (117) |
446 (124) |
453 (131) |
460 (138) |