160edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 159edt 160edt 161edt →
Prime factorization 25 × 5
Step size 11.8872¢ 
Octave 101\160edt (1200.61¢)
Consistency limit 5
Distinct consistency limit 5

160 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 160edt or 160ed3), is a nonoctave tuning system that divides the interval of 3/1 into 160 equal parts of about 11.9 ¢ each. Each step represents a frequency ratio of 31/160, or the 160th root of 3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 11.9
2 23.8
3 35.7 48/47, 50/49
4 47.5 37/36, 38/37
5 59.4 29/28, 30/29
6 71.3
7 83.2 21/20, 43/41
8 95.1
9 107 33/31
10 118.9 15/14
11 130.8 41/38
12 142.6 51/47
13 154.5 47/43
14 166.4 11/10
15 178.3 41/37, 51/46
16 190.2 48/43
17 202.1
18 214 43/38
19 225.9 41/36
20 237.7 31/27, 39/34, 47/41
21 249.6
22 261.5 43/37
23 273.4 48/41
24 285.3 33/28, 46/39
25 297.2 19/16
26 309.1
27 321
28 332.8 40/33, 57/47
29 344.7
30 356.6
31 368.5 47/38
32 380.4
33 392.3
34 404.2 24/19
35 416.1
36 427.9 41/32
37 439.8 58/45
38 451.7 48/37
39 463.6 17/13
40 475.5 54/41
41 487.4 57/43
42 499.3 4/3
43 511.2 43/32
44 523 23/17
45 534.9
46 546.8 37/27
47 558.7 29/21
48 570.6 32/23, 57/41
49 582.5 7/5
50 594.4 31/22
51 606.2 44/31
52 618.1 10/7
53 630
54 641.9 29/20, 42/29
55 653.8 54/37
56 665.7 47/32
57 677.6 34/23
58 689.5
59 701.3 3/2
60 713.2
61 725.1
62 737
63 748.9 37/24, 57/37
64 760.8 45/29
65 772.7
66 784.6
67 796.4 19/12
68 808.3 51/32
69 820.2 45/28
70 832.1
71 844
72 855.9
73 867.8 33/20
74 879.7
75 891.5
76 903.4 32/19
77 915.3 39/23, 56/33
78 927.2 41/24
79 939.1
80 951
81 962.9
82 974.8
83 986.6 23/13
84 998.5 57/32
85 1010.4 43/24
86 1022.3
87 1034.2 20/11
88 1046.1
89 1058
90 1069.8
91 1081.7 28/15
92 1093.6 32/17
93 1105.5 36/19
94 1117.4
95 1129.3
96 1141.2 29/15
97 1153.1 37/19
98 1164.9 47/24, 49/25
99 1176.8
100 1188.7
101 1200.6 2/1
102 1212.5
103 1224.4
104 1236.3 47/23
105 1248.2 37/18
106 1260 29/14, 60/29
107 1271.9
108 1283.8 21/10
109 1295.7
110 1307.6
111 1319.5 15/7
112 1331.4 41/19
113 1343.3
114 1355.1
115 1367
116 1378.9 51/23
117 1390.8
118 1402.7 9/4
119 1414.6 43/19
120 1426.5 41/18
121 1438.4 39/17
122 1450.2 37/16
123 1462.1
124 1474
125 1485.9
126 1497.8 19/8
127 1509.7
128 1521.6
129 1533.5
130 1545.3
131 1557.2
132 1569.1 47/19
133 1581
134 1592.9
135 1604.8 48/19
136 1616.7 28/11
137 1628.5 41/16
138 1640.4
139 1652.3
140 1664.2 34/13
141 1676.1
142 1688
143 1699.9
144 1711.8 43/16
145 1723.6 46/17
146 1735.5 30/11
147 1747.4
148 1759.3 47/17, 58/21
149 1771.2
150 1783.1 14/5
151 1795 31/11
152 1806.9
153 1818.7 20/7
154 1830.6
155 1842.5 29/10
156 1854.4
157 1866.3 47/16
158 1878.2
159 1890.1
160 1902 3/1

Harmonics

Approximation of harmonics in 160edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.61 +0.00 +1.22 -4.70 +0.61 -4.74 +1.83 +0.00 -4.10 -2.68 +1.22
Relative (%) +5.1 +0.0 +10.2 -39.6 +5.1 -39.9 +15.4 +0.0 -34.5 -22.5 +10.2
Steps
(reduced)
101
(101)
160
(0)
202
(42)
234
(74)
261
(101)
283
(123)
303
(143)
320
(0)
335
(15)
349
(29)
362
(42)
Approximation of harmonics in 160edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +5.29 -4.13 -4.70 +2.44 +4.47 +0.61 +2.10 -3.49 -4.74 -2.07 +4.18
Relative (%) +44.5 -34.8 -39.6 +20.5 +37.6 +5.1 +17.7 -29.3 -39.9 -17.4 +35.2
Steps
(reduced)
374
(54)
384
(64)
394
(74)
404
(84)
413
(93)
421
(101)
429
(109)
436
(116)
443
(123)
450
(130)
457
(137)