User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions
No edit summary |
|||
Line 9: | Line 9: | ||
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth notation and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used. | There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth notation and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used. | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Cents | |+Cents | ||
! colspan="2" |Notation | ! colspan="2" |Notation | ||
!Supersoft | !Supersoft | ||
Line 39: | Line 39: | ||
|3\9, 163.{{Overline|63}} | |3\9, 163.{{Overline|63}} | ||
|- | |- | ||
|Reb, Lab | | Reb, Lab | ||
|Lab | |Lab | ||
|3\11, 138.462 | |3\11, 138.462 | ||
Line 64: | Line 64: | ||
|7\13, 270.967 | |7\13, 270.967 | ||
| rowspan="2" |'''3\5,''' '''300''' | | rowspan="2" |'''3\5,''' '''300''' | ||
|8\12, 331.034 | | 8\12, 331.034 | ||
|5\7, 352.941 | |5\7, 352.941 | ||
|7\9, 381.{{Overline|81}} | |7\9, 381.{{Overline|81}} | ||
Line 78: | Line 78: | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|Si | | Si | ||
|8\11, 369.231 | |8\11, 369.231 | ||
|6\8, 378.947 | |6\8, 378.947 | ||
Line 98: | Line 98: | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Dob | | Dob | ||
|10\11, 461.538 | |10\11, 461.538 | ||
|11\13, 425.806 | |11\13, 425.806 | ||
Line 175: | Line 175: | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
|Mi# | | Mi# | ||
|20\11, 923.077 | |20\11, 923.077 | ||
| rowspan="2" |15\8, 947.378 | | rowspan="2" |15\8, 947.378 | ||
|25\13 | |25\13, 967.742 | ||
967 | |10\5, 1000 | ||
|10\5 | |25\12, 1034.483 | ||
1000 | |15\7, 1058.824 | ||
|25\12 | |20\9, 1090.{{Overline|90}} | ||
1034 | |||
|15\7 | |||
1058 | |||
|20\9 | |||
1090.{{Overline|90}} | |||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Solb | |Solb | ||
|21\11 | |21\11, 969.231 | ||
969 | |24\13, 929.033 | ||
|24\13 | |9\5, 900 | ||
929 | |21\12, 868.966 | ||
|9\5 | |11\7, 776.471 | ||
900 | |15\9, 818.{{Overline|18}} | ||
|21\12 | |||
868 | |||
|11\7 | |||
776 | |||
|15\9 | |||
818.{{Overline|18}} | |||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!Sol | !Sol | ||
!22\11 | !22\11, 1015.385 | ||
1015 | !16\8, 1010.526 | ||
!16\8 | !26\13, 1006.452 | ||
1010 | !10\5, 1000 | ||
!26\13 | !24\12, 993.103 | ||
1006 | !14\7, 988.235 | ||
!10\5 | !18\9,981.{{Overline|81}} | ||
1000 | |||
!24\12 | |||
993 | |||
!14\7 | |||
988 | |||
!18\9 | |||
981.{{Overline|81}} | |||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
! colspan=" | ! colspan="2" |Notation | ||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
Line 233: | Line 215: | ||
!Mahur | !Mahur | ||
!Bijou | !Bijou | ||
!~11ed4/3 | !~11ed4/3 | ||
!~8ed4/3 | ! ~8ed4/3 | ||
!~13ed4/3 | !~13ed4/3 | ||
!~5ed4/3 | !~5ed4/3 | ||
Line 245: | Line 225: | ||
|G# | |G# | ||
|0#, E# | |0#, E# | ||
|1\11, 46.154 | |||
|1\8, 63.158 | |||
|1\11 | |2\13, 77.419 | ||
46 | | rowspan="2" |1\5, 100 | ||
|1\8 | |3\12, 124.138 | ||
63 | |2\7, 141.176 | ||
|2\13 | |3\9, 163.{{Overline|63}} | ||
77 | |||
| rowspan="2" |1\5 | |||
100 | |||
|3\12 | |||
124 | |||
|2\7 | |||
141 | |||
|3\9 | |||
163.{{Overline|63}} | |||
|- | |- | ||
|Jf, Af | |Jf, Af | ||
|1b, 1d | |1b, 1d | ||
|3\11, 138.462 | |||
|2\8, 126.316 | |||
|3\11 | | 3\13, 116.129 | ||
138 | |2\12, 82.759 | ||
|2\8 | |1\7, 70.588 | ||
126 | |1\9, 54.{{Overline|54}} | ||
|3\13 | |||
116 | |||
|2\12 | |||
82 | |||
|1\7 | |||
70 | |||
|1\9 | |||
54.{{Overline|54}} | |||
|- | |- | ||
|'''J, A''' | |'''J, A''' | ||
|'''1''' | |'''1''' | ||
|'''4\11,''' '''184.615''' | |||
|'''3\8,''' '''189.474''' | |||
|'''4\11''' | |'''5\13,''' '''193.548''' | ||
'''184 | |'''2\5,''' '''200''' | ||
|'''3\8''' | |'''5\12,''' '''206.897''' | ||
'''189 | |'''3\7,''' '''211.765''' | ||
|'''5\13''' | |'''4\9,''' '''218.{{Overline|18}}''' | ||
'''193 | |||
|'''2\5''' | |||
'''200''' | |||
|'''5\12''' | |||
'''206 | |||
|'''3\7''' | |||
'''211 | |||
|'''4\9''' | |||
'''218.{{Overline|18}}''' | |||
|- | |- | ||
|J#, A# | |J#, A# | ||
|1# | |1# | ||
|5\11, 230.769 | |||
|4\8, 252.632 | |||
|5\11 | |7\13, 270.968 | ||
230 | | rowspan="2" |'''3\5,''' '''300''' | ||
|4\8 | |8\12, 331.034 | ||
252 | |5\7, 352.941 | ||
|7\13 | |7\9, 381.{{Overline|81}} | ||
270 | |||
| rowspan="2" |'''3\5''' | |||
'''300''' | |||
|8\12 | |||
331 | |||
|5\7 | |||
352 | |||
|7\9 | |||
381.{{Overline|81}} | |||
|- | |- | ||
|'''Af, Bf''' | |'''Af, Bf''' | ||
|'''2b, 2d''' | |'''2b, 2d''' | ||
|'''7\11,''' '''323.077''' | |||
|'''5\8,''' '''315.789''' | |||
|'''7\11''' | |'''8\13,''' '''309.677''' | ||
'''323 | |'''7\12,''' '''289.655''' | ||
|'''5\8''' | |'''4\7,''' '''282.353''' | ||
'''315 | |'''5\9,''' '''272.{{Overline|72}}''' | ||
|'''8\13''' | |||
'''309 | |||
|'''7\12''' | |||
'''289 | |||
|'''4\7''' | |||
'''282 | |||
|'''5\9''' | |||
'''272.{{Overline|72}}''' | |||
|- | |- | ||
|A, B | |A, B | ||
|2 | |2 | ||
|8\11, 369.231 | |||
|6\8, 378.947 | |||
|8\11 | |10\13, 387.097 | ||
369 | |4\5, 400 | ||
|6\8 | |10\12, 413.793 | ||
378 | |6\7, 423.529 | ||
|10\13 | |8\9, 436.{{Overline|36}} | ||
387 | |||
|4\5 | |||
400 | |||
|10\12 | |||
413 | |||
|6\7 | |||
423 | |||
|8\9 | |||
436.{{Overline|36}} | |||
|- | |- | ||
|A#, B# | |A#, B# | ||
|2# | |2# | ||
|9\11, 415.385 | |||
| rowspan="2" |7\8, 442.105 | |||
|9\11 | |12\13, 464.516 | ||
415 | |5\5, 500 | ||
| rowspan="2" |7\8 | |13\12, 537.069 | ||
442 | |8\7, 564.705 | ||
|12\13 | |11\9, 600 | ||
464 | |||
|5\5 | |||
500 | |||
|13\12 | |||
537 | |||
|8\7 | |||
564 | |||
|11\9 | |||
600 | |||
|- | |- | ||
|Bb, Cf | |Bb, Cf | ||
|3b, 3d | |3b, 3d | ||
|10\11, 461.538 | |||
|11\13, 425.806 | |||
|10\11 | | 4\5, 400 | ||
461 | |9\12, 372.414 | ||
|11\13 | |5\7, 352.941 | ||
425 | |6\9, 327.{{Overline|27}} | ||
|4\5 | |||
400 | |||
|9\12 | |||
372 | |||
|5\7 | |||
352 | |||
|6\9 | |||
327.{{Overline|27}} | |||
|- | |- | ||
!B, C | !B, C | ||
!3 | !3 | ||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''11\11''' | !'''13\13,''' '''503.226''' | ||
'''507 | !5\5, 500 | ||
!'''8\8''' | !'''12\12,''' '''496.552''' | ||
'''505 | !'''7\7,''' '''494.118''' | ||
!'''13\13''' | !'''9\9,''' '''490.{{Overline|90}}''' | ||
'''503 | |||
! | |||
!'''12\12''' | |||
'''496 | |||
!'''7\7''' | |||
'''494 | |||
!'''9\9''' | |||
'''490.{{Overline|90}}''' | |||
|- | |- | ||
|B#, C# | |B#, C# | ||
|3# | |3# | ||
|12\11, 553.846 | |||
|9\8, 568.421 | |||
|12\11 | |15\13, 580.645 | ||
553 | | rowspan="2" |6\5, 600 | ||
|9\8 | |15\12, 620.690 | ||
568 | |9\7, 635.294 | ||
|15\13 | |12\9, 654.{{Overline|54}} | ||
580 | |||
| rowspan="2" |6\5 | |||
600 | |||
|15\12 | |||
620 | |||
|9\7 | |||
635 | |||
|12\9 | |||
654.{{Overline|54}} | |||
|- | |- | ||
|Cf, Qf | |Cf, Qf | ||
|4b, 4d | |4b, 4d | ||
|14\11, 646.154 | |||
|10\8, 631.579 | |||
|14\11 | |16\13, 619.355 | ||
646 | |14\12, 579.310 | ||
|10\8 | |8\7, 564.706 | ||
631 | |10\9, 545.{{Overline|45}} | ||
|16\13 | |||
619 | |||
|14\12 | |||
579 | |||
|8\7 | |||
564 | |||
|10\9 | |||
545.{{Overline|45}} | |||
|- | |- | ||
|'''C, Q''' | |'''C, Q''' | ||
|'''4''' | |'''4''' | ||
|'''15\11,''' '''692.308''' | |||
|'''11\8''' '''694.737''' | |||
|'''15\11''' | |'''18\13,''' '''696.774''' | ||
'''692 | |'''7\5,''' '''700''' | ||
|'''11\8''' | |'''17\12,''' '''703.448''' | ||
'''694 | |'''10\7,''' '''705.882''' | ||
|'''18\13''' | |'''13\9,''' '''709.{{Overline|09}}''' | ||
'''696 | |||
|'''7\5''' | |||
'''700''' | |||
|'''17\12''' | |||
'''703 | |||
|'''10\7''' | |||
'''705 | |||
|'''13\9''' | |||
'''709.{{Overline|09}}''' | |||
|- | |- | ||
|C#, Q# | |C#, Q# | ||
|4# | |4# | ||
|16\11, 738.462 | |||
|12\8, 757.895 | |||
|16\11 | | 20\13, 774.194 | ||
738 | | rowspan="2" |'''8\5,''' '''800''' | ||
|12\8 | |20\12, 827.586 | ||
757 | |12\7, 847.059 | ||
|20\13 | |16\9, 872.{{Overline|72}} | ||
774 | |||
| rowspan="2" |'''8\5''' | |||
'''800''' | |||
|20\12 | |||
827 | |||
|12\7 | |||
847 | |||
|16\9 | |||
872.{{Overline|72}} | |||
|- | |- | ||
|'''Qf, Df''' | |'''Qf, Df''' | ||
|'''5b, 5d''' | |'''5b, 5d''' | ||
|'''18\11,''' '''830.769''' | |||
|'''13\8,''' '''821.053''' | |||
|'''18\11''' | |'''21\13,''' '''812.903''' | ||
'''830 | |'''19\12,''' '''786.207''' | ||
|'''13\8''' | |'''11\7,''' '''776.471''' | ||
'''821 | |'''14\9,''' '''763.{{Overline|63}}''' | ||
|'''21\13''' | |||
'''812 | |||
|'''19\12''' | |||
'''786 | |||
|'''11\7''' | |||
'''776 | |||
|'''14\9''' | |||
'''763.{{Overline|63}}''' | |||
|- | |- | ||
|Q, D | |Q, D | ||
|5 | |5 | ||
|19\11, 876.923 | |||
|14\8, 884.211 | |||
|19\11 | |23\13, 890.323 | ||
876 | |9\5, 900 | ||
|14\8 | |22\12, 910.345 | ||
884 | |13\7, 917.647 | ||
|23\13 | |17\9, 927.{{Overline|27}} | ||
890 | |||
|9\5 | |||
900 | |||
|22\12 | |||
910 | |||
|13\7 | |||
917 | |||
|17\9 | |||
927.{{Overline|27}} | |||
|- | |- | ||
|Q#, D# | |Q#, D# | ||
|5# | |5# | ||
|20\11, 923.077 | |||
| rowspan="2" |15\8, 947.368 | |||
|20\11 | |25\13, 967.742 | ||
923 | |10\5, 1000 | ||
| rowspan="2" |15\8 | |25\12, 1034.483 | ||
947 | |15\7, 1058.824 | ||
|25\13 | |20\9, 1090.{{Overline|90}} | ||
967 | |||
|10\5 | |||
1000 | |||
|25\12 | |||
1034 | |||
|15\7 | |||
1058 | |||
|20\9 | |||
1090.{{Overline|90}} | |||
|- | |- | ||
|Df, Sf | |Df, Sf | ||
|6b, 6d | |6b, 6d | ||
|21\11, 969.231 | |||
|24\13, 929.033 | |||
|21\11 | |9\5, 900 | ||
969 | |21\12, 868.966 | ||
|24\13 | |11\7, 776.471 | ||
929 | |15\9, 818.{{Overline|18}} | ||
|9\5 | |||
900 | |||
|21\12 | |||
868 | |||
|11\7 | |||
776 | |||
|15\9 | |||
818.{{Overline|18}} | |||
|- | |- | ||
!D, S | !D, S | ||
!6 | !6 | ||
!22\11, 1015.385 | |||
!16\8, 1010.526 | |||
!22\11 | !26\13, 1006.452 | ||
1015 | !10\5, 1000 | ||
!16\8 | !24\12, 993.103 | ||
1010 | ! 14\7, 988.235 | ||
!26\13 | !18\9, 981.{{Overline|81}} | ||
1006 | |||
!10\5 | |||
1000 | |||
!24\12 | |||
993 | |||
!14\7 | |||
988 | |||
!18\9 | |||
981.{{Overline|81}} | |||
|- | |- | ||
|D#, S# | |D#, S# | ||
|6# | |6# | ||
|23\11, 1061.538 | |||
|17\8, 1073.684 | |||
|23\11 | |28\13, 1083.871 | ||
1061 | | rowspan="2" |11\5, 1100 | ||
|17\8 | |27\12, 1117.241 | ||
1073 | |16\7, 1129.412 | ||
|28\13 | |21\9, 1145.{{Overline|45}} | ||
1083 | |||
| rowspan="2" |11\5 | |||
1100 | |||
|27\12 | |||
1117 | |||
|16\7 | |||
1129 | |||
| | |||
|- | |- | ||
|Ef | |Ef | ||
|7b, 7d | |7b, 7d | ||
| 25\11, 1153.846 | |||
| 18\8, 1136.842 | |||
|25\11 | |29\13, 1122.581 | ||
1153 | |26\12, 1075.862 | ||
|18\8 | |15\7, 1058.824 | ||
1136 | |19\9, 1036.{{Overline|36}} | ||
|29\13 | |||
1122 | |||
|26\12 | |||
1075 | |||
|15\7 | |||
1058 | |||
|19\9 | |||
1036.{{Overline|36}} | |||
|- | |- | ||
|'''E''' | |'''E''' | ||
|'''7''' | |'''7''' | ||
|'''26\11,''' '''1200''' | |||
|'''19\8,''' '''1200''' | |||
|'''31\13,''' '''1200''' | |||
|'''12\5,''' '''1200''' | |||
|'''29\12,''' '''1200''' | |||
|'''17\7,''' '''1200''' | |||
|'''22\9,''' '''1200''' | |||
|- | |||
|E# | |||
|7# | |||
|27\11, 1246.154 | |||
|20\8, 1263.158 | |||
|33\13, 1277.419 | |||
| rowspan="2" |'''13\5,''' '''1300''' | |||
|32\12, 1324.138 | |||
|19\7, 1341.176 | |||
|25\9, 1363.{{Overline|63}} | |||
|- | |||
|'''Ff''' | |||
|'''8b, Gd''' | |||
|'''29\11,''' '''1338.462''' | |||
|'''21\8,''' '''1326.316''' | |||
|'''34\13,''' '''1316.129''' | |||
|'''31\12,''' '''1282.759''' | |||
|'''18\7,''' '''1270.588''' | |||
|'''23\9,''' '''1254.{{Overline|54}}''' | |||
|- | |||
|F | |||
|8, G | |||
|30\11, 1384.615 | |||
|22\8, 1389.474 | |||
|36\13, 1393.548 | |||
|14\5, 1400 | |||
|34\12, 1406.897 | |||
|20\7, 1411.765 | |||
|26\9, 1418.{{Overline|18}} | |||
|- | |||
|F# | |||
|8#, G# | |||
|31\11, 1430.769 | |||
| rowspan="2" |23\8, 1452.632 | |||
|38\13, 1470.968 | |||
|15\5, 1500 | |||
|37\12, 1531.034 | |||
|22\7, 1552.941 | |||
|29\9, 1581.{{Overline|81}} | |||
|- | |||
|Gf | |||
|9b, Ad | |||
|32\11, 1476.923 | |||
|37\13, 1432.258 | |||
|14\5, 1400 | |||
|33\12, 1365.517 | |||
|19\7, 1341.176 | |||
|24\9, 1309.{{Overline|09}} | |||
|- | |||
!G | |||
!'''9, A''' | |||
!33\11, 1523.077 | |||
!24\8, 1515.789 | |||
!39\13, 1509.677 | |||
!15\5, 1500 | |||
!36\12, 1489.655 | |||
!21\7, 1482.353 | |||
!27\9, 1472.{{Overline|72}} | |||
|- | |||
|G# | |||
|9#, A# | |||
|34\11, 1569.231 | |||
| 25\8, 1578.947 | |||
|41\13, 1587.097 | |||
| rowspan="2" |16\5, 1600 | |||
|39\12, 1613.793 | |||
|23\7, 1623.529 | |||
|30\9, 1636.{{Overline|36}} | |||
|- | |||
|Jf, Af | |||
|Xb, Bd | |||
|36\11, 1661.538 | |||
|26\8, 1642.105 | |||
|42\13, 1625.806 | |||
|38\12, 1572.034 | |||
|22\7, 1552.941 | |||
|28\9, 1527.{{Overline|27}} | |||
|- | |||
|'''J, A''' | |||
|'''X, B''' | |||
|'''37\11,''' '''1707.692''' | |||
|'''27\8,''' '''1705.263''' | |||
|'''44\13,''' '''1703.226''' | |||
|'''17\5,''' '''1700''' | |||
|'''41\12,''' '''1696.552''' | |||
|'''24\7,''' '''1694.118''' | |||
|'''31\9,''' '''1690.{{Overline|90}}''' | |||
|- | |||
|J#, A# | |||
|X#, B# | |||
|38\11, 1753.846 | |||
|28\8, 1768.421 | |||
|46\13, 1780.645 | |||
| rowspan="2" |'''18\5,''' '''1800''' | |||
|44\12, 1820.690 | |||
|26\7, 1835.294 | |||
|34\9, 1854.{{Overline|54}} | |||
|- | |||
|'''Af, Bf''' | |||
|'''Eb, Dd''' | |||
|'''40\11,''' '''1846.154''' | |||
|'''29\8,''' '''1831.579''' | |||
|'''47\13,''' '''1819.355''' | |||
|'''43\12,''' '''1779.310''' | |||
|'''25\7,''' '''1764.706''' | |||
|'''32\9,''' '''1745.{{Overline|45}}''' | |||
|- | |||
|A, B | |||
|E, D | |||
|41\11, 1892.308 | |||
|30\8, 1894.737 | |||
|49\13, 1896.774 | |||
|19\5, 1900 | |||
|46\12, 1903.448 | |||
|27\7, 1905.882 | |||
|35\9, 1909.{{Overline|09}} | |||
|- | |||
|A#, B# | |||
|E#, D# | |||
|42\11, 1938.462 | |||
| rowspan="2" |31\8, 1957.895 | |||
|51\13, 1974.194 | |||
|20\5, 2000 | |||
|49\12, 2027.586 | |||
|29\7, 2047.059 | |||
|38\9, 2072.{{Overline|72}} | |||
|- | |||
|Bb, Cf | |||
|0b, Ed | |||
| 43\11, 1984.615 | |||
|50\13, 1935.484 | |||
|19\5, 1900 | |||
|45\12, 1862.069 | |||
|26\7, 1835.294 | |||
|33\9, 1800 | |||
|- | |||
!B, C | |||
! 0, E | |||
!44\11, 2030.769 | |||
!32\8, 2021.053 | |||
!52\13, 2012.903 | |||
!20\5, 2000 | |||
!48\12, 1986.207 | |||
!28\7, 1976.471 | |||
!36\9, 1963.{{Overline|63}} | |||
|} | |||
{| class="wikitable" | |||
! colspan="2" |Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
! Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |||
!Hyperionic | |||
!Subsextal | |||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
! ~7ed4\3 | |||
!~9ed4/3 | |||
|- | |||
|1# | |||
|0# | |||
|1\11, 46.154 | |||
|1\8, 63.158 | |||
|2\13, 77.419 | |||
| rowspan="2" |1\5, 100 | |||
|3\12, 124.138 | |||
|2\7, 141.176 | |||
|3\9, 163.{{Overline|63}} | |||
|- | |||
|2f | |||
|1f | |||
| 3\11, 138.462 | |||
|2\8, 126.316 | |||
|3\13, 116.129 | |||
|2\12, 82.759 | |||
|1\7, 70.588 | |||
|1\9, 54.{{Overline|54}} | |||
|- | |||
|'''2''' | |||
|'''1''' | |||
|'''4\11,''' '''184.615''' | |||
|'''3\8,''' '''189.474''' | |||
|'''5\13,''' '''193.548''' | |||
|'''2\5,''' '''200''' | |||
|'''5\12,''' '''206.897''' | |||
|'''3\7,''' '''211.765''' | |||
|'''4\9,''' '''218.{{Overline|18}}''' | |||
|- | |||
|2# | |||
|1# | |||
| 5\11, 230.769 | |||
| 4\8, 252.632 | |||
|7\13, 270.967 | |||
| rowspan="2" |'''3\5,''' '''300''' | |||
|8\12, 331.034 | |||
|5\7, 352.941 | |||
| 7\9, 381.{{Overline|81}} | |||
|- | |||
|'''3f''' | |||
|2f | |||
|'''7\11,''' '''323.077''' | |||
|'''5\8,''' '''315.789''' | |||
|'''8\13,''' '''309.677''' | |||
|'''7\12,''' '''289.655''' | |||
|'''4\7,''' '''282.353''' | |||
|'''5\9,''' '''272.{{Overline|72}}''' | |||
|- | |||
|3 | |||
|'''2''' | |||
| 8\11, 369.231 | |||
|6\8, 378.947 | |||
|10\13, 387.098 | |||
|4\5, 400 | |||
|10\12, 413.793 | |||
|6\7, 423.529 | |||
|8\9, 436.{{Overline|36}} | |||
|- | |||
|3# | |||
| 2# | |||
| 9\11, 415.385 | |||
| rowspan="2" | 7\8, 442.105 | |||
| 12\13, 464.516 | |||
|5\5, 500 | |||
|13\12, 537.069 | |||
|8\7, 564.705 | |||
|11\9, 600 | |||
|- | |||
|4f | |||
|'''3f''' | |||
|10\11, 461.538 | |||
|11\13, 425.806 | |||
|4\5, 400 | |||
|9\12, 372.414 | |||
| 5\7, 352.941 | |||
|6\9, 327.{{Overline|27}} | |||
|- | |||
!4 | |||
!3 | |||
!'''11\11,''' '''507.692''' | |||
!'''8\8,''' '''505.263''' | |||
!'''13\13,''' '''503.226''' | |||
! 5\5, 500 | |||
!'''12\12,''' '''496.552''' | |||
!'''7\7,''' '''494.118''' | |||
!'''9\9,''' '''490.{{Overline|90}}''' | |||
|- | |||
|4# | |||
| 3# | |||
|12\11, 553.846 | |||
| 9\8, 568.421 | |||
|15\13, 580.645 | |||
| rowspan="2" | 6\5, 600 | |||
| 15\12, 620.690 | |||
|9\7, 635.294 | |||
|12\9, 654.{{Overline|54}} | |||
|- | |||
|5f | |||
|4f | |||
|14\11, 646.154 | |||
|10\8, 631.579 | |||
|16\13, 619.355 | |||
|14\12, 579.310 | |||
|8\7, 564.706 | |||
|10\9, 545.{{Overline|45}} | |||
|- | |||
|'''5''' | |||
|'''4''' | |||
|'''15\11,''' '''692.308''' | |||
|'''11\8''' '''694.737''' | |||
|'''18\13,''' '''696.774''' | |||
|'''7\5,''' '''700''' | |||
|'''17\12,''' '''703.448''' | |||
|'''10\7,''' '''705.882''' | |||
|'''13\9,''' '''709.{{Overline|09}}''' | |||
|- | |||
|5# | |||
|4# | |||
|16\11, 738.462 | |||
|12\8, 757.895 | |||
|20\13, 774.194 | |||
| rowspan="2" |'''8\5,''' '''800''' | |||
|20\12, 827.586 | |||
| 12\7, 847.059 | |||
|16\9, 872.{{Overline|72}} | |||
|- | |||
|'''6f''' | |||
|5f | |||
|'''18\11,''' '''830.769''' | |||
|'''13\8,''' '''821.053''' | |||
|'''21\13,''' '''812.903''' | |||
|'''19\12,''' '''786.207''' | |||
|'''11\7,''' '''776.471''' | |||
|'''14\9,''' '''763.{{Overline|63}}''' | |||
|- | |||
|6 | |||
|'''5''' | |||
|19\11, 876.923 | |||
|14\8, 884.211 | |||
|23\13, 890.323 | |||
|9\5, 900 | |||
|22\12, 910.345 | |||
|13\7, 917.647 | |||
|17\9, 927.{{Overline|27}} | |||
|- | |||
|6# | |||
|5# | |||
|20\11, 923.077 | |||
| rowspan="2" | 15\8, 947.368 | |||
|25\13, 967.742 | |||
|10\5, 1000 | |||
|25\12, 1034.483 | |||
|15\7, 1058.824 | |||
|20\9, 1090.{{Overline|90}} | |||
|- | |||
|7f | |||
|'''6f''' | |||
|21\11, 969.231 | |||
|24\13, 929.032 | |||
|9\5, 900 | |||
|21\12, 868.966 | |||
|11\7, 776.471 | |||
|15\9, 818.{{Overline|18}} | |||
|- | |||
!7 | |||
!6 | |||
!22\11, 1015.385 | |||
!16\8, 1010.526 | |||
!26\13, 1006.452 | |||
!10\5, 1000 | |||
!24\12, 993.103 | |||
!14\7, 988.235 | |||
!18\9, 981.{{Overline|81}} | |||
|- | |||
|7# | |||
|6# | |||
|23\11, 1061.538 | |||
|17\8, 1073.684 | |||
|28\13, 1083.871 | |||
| rowspan="2" |11\5, 1100 | |||
|27\12, 1117.241 | |||
|16\7, 1129.412 | |||
|21\9, 1145.{{Overline|45}} | |||
|- | |||
|8f | |||
| 7f | |||
|25\11, 1153.846 | |||
|18\8, 1136.842 | |||
|29\13, 1122.581 | |||
| 26\12, 1075.862 | |||
|15\7, 1058.824 | |||
|19\9, 1036.{{Overline|36}} | |||
|- | |||
|'''8''' | |'''8''' | ||
|7 | |7 | ||
|'''26\11''' | |'''26\11,''' '''1200''' | ||
'''1200''' | |'''19\8,''' '''1200''' | ||
|'''19\8''' | |'''31\13,''' '''1200''' | ||
'''1200''' | |'''12\5,''' '''1200''' | ||
|'''31\13''' | |'''29\12,''' '''1200''' | ||
'''1200''' | |'''17\7,''' '''1200''' | ||
|'''12\5''' | |'''22\9,''' '''1200''' | ||
'''1200''' | |||
|'''29\12''' | |||
'''1200''' | |||
|'''17\7''' | |||
'''1200''' | |||
|'''22\9''' | |||
'''1200''' | |||
|- | |- | ||
|8# | |8# | ||
|7# | |7# | ||
|27\11 | |27\11, 1246.154 | ||
1246 | |20\8, 1263.158 | ||
|20\8 | |33\13, 1277.419 | ||
1263 | | rowspan="2" |'''13\5,''' '''1300''' | ||
|33\13 | |32\12, 1324.138 | ||
1277 | |19\7, 1341.176 | ||
| rowspan="2" |'''13\5''' | |25\9, 1363.{{Overline|63}} | ||
'''1300''' | |||
|32\12 | |||
1324 | |||
|19\7 | |||
1341 | |||
|25\9 | |||
1363.{{Overline|63}} | |||
|- | |- | ||
|'''9f''' | |'''9f''' | ||
|8f | |8f | ||
|'''29\11''' | |'''29\11,''' '''1338.462''' | ||
'''1338 | |'''21\8,''' '''1326.316''' | ||
|'''21\8''' | |'''34\13,''' '''1316.129''' | ||
'''1326 | |'''31\12,''' '''1282.759''' | ||
|'''34\13''' | |'''18\7,''' '''1270.588''' | ||
'''1316 | |'''23\9,''' '''1254.{{Overline|54}}''' | ||
|'''31\12''' | |||
'''1282 | |||
|'''18\7''' | |||
'''1270 | |||
|'''23\9''' | |||
'''1254.{{Overline|54}}''' | |||
|- | |- | ||
|9 | |9 | ||
|'''8''' | |'''8''' | ||
|30\11 | |30\11, 1384.615 | ||
1384 | |22\8, 1389.474 | ||
|22\8 | |36\13, 1393.548 | ||
1389 | |14\5, 1400 | ||
|36\13 | |34\12, 1406.897 | ||
1393 | |20\7, 1411.765 | ||
|14\5 | |26\9, 1418.{{Overline|18}} | ||
1400 | |||
|34\12 | |||
1406 | |||
|20\7 | |||
1411 | |||
|26\9 | |||
1418.{{Overline|18}} | |||
|- | |- | ||
|9# | |9# | ||
|8# | |8# | ||
|31\11 | | 31\11, 1430.769 | ||
1430 | | rowspan="2" | 23\8, 1452.632 | ||
| rowspan="2" |23\8 | |38\13, 1470.968 | ||
1452 | |15\5, 1500 | ||
|38\13 | |37\12, 1531.034 | ||
1470 | |22\7, 1552.941 | ||
|15\5 | |29\9, 1581.{{Overline|81}} | ||
1500 | |||
|37\12 | |||
1531 | |||
|22\7 | |||
1552 | |||
|29\9 | |||
1581.{{Overline|81}} | |||
|- | |- | ||
|Af | |Af | ||
|9f | |9f | ||
|32\11 | |32\11, 1476.923 | ||
1476 | | 37\13, 1432.258 | ||
|37\13 | |14\5, 1400 | ||
1432 | |33\12, 1365.517 | ||
|14\5 | |19\7, 1341.176 | ||
1400 | |24\9, 1309.{{Overline|09}} | ||
|33\12 | |||
1365 | |||
|19\7 | |||
1341 | |||
|24\9 | |||
1309.{{Overline|09}} | |||
|- | |- | ||
!A | !A | ||
!9 | !9 | ||
!33\11 | !33\11, 1523.077 | ||
1523 | !24\8, 1515.789 | ||
!24\8 | !39\13, 1509.677 | ||
1515 | !15\5, 1500 | ||
!39\13 | !36\12, 1489.655 | ||
1509 | !21\7, 1482.353 | ||
!15\5 | !27\9, 1472.{{Overline|72}} | ||
1500 | |||
!36\12 | |||
1489 | |||
!21\7 | |||
1482 | |||
!27\9 | |||
1472.{{Overline|72}} | |||
|- | |- | ||
|A# | |A# | ||
|9# | |9# | ||
|34\11 | |34\11, 1569.231 | ||
1569 | |25\8, 1578.947 | ||
|25\8 | |41\13, 1587.097 | ||
1578 | | rowspan="2" |16\5, 1600 | ||
|41\13 | |39\12, 1613.793 | ||
1587 | |23\7, 1623.529 | ||
| rowspan="2" |16\5 | |30\9, 1636.{{Overline|36}} | ||
1600 | |||
|39\12 | |||
1613 | |||
|23\7 | |||
1623 | |||
|30\9 | |||
1636.{{Overline|36}} | |||
|- | |- | ||
|Bf | |Bf | ||
|Xb | |Xb | ||
|36\11 | |36\11, 1661.538 | ||
1661 | |26\8, 1642.105 | ||
|26\8 | |42\13, 1625.806 | ||
1642 | |38\12, 1572.034 | ||
|42\13 | |22\7, 1552.941 | ||
1625 | |28\9, 1527.{{Overline|27}} | ||
|38\12 | |||
1572 | |||
|22\7 | |||
1552 | |||
|28\9 | |||
1527.{{Overline|27}} | |||
|- | |- | ||
|'''B''' | |'''B''' | ||
|'''X''' | |'''X''' | ||
|'''37\11''' | |'''37\11,''' '''1707.692''' | ||
'''1707 | |'''27\8,''' '''1705.263''' | ||
|'''27\8''' | |'''44\13,''' '''1703.226''' | ||
'''1705 | |'''17\5,''' '''1700''' | ||
|'''44\13''' | |'''41\12,''' '''1696.552''' | ||
'''1703 | |'''24\7,''' '''1694.118''' | ||
|'''17\5''' | |'''31\9,''' '''1690.{{Overline|90}}''' | ||
'''1700''' | |||
|'''41\12''' | |||
'''1696 | |||
|'''24\7''' | |||
'''1694 | |||
|'''31\9''' | |||
'''1690.{{Overline|90}}''' | |||
|- | |- | ||
|B# | |B# | ||
|X# | |X# | ||
|38\11 | |38\11, 1753.846 | ||
1753 | |28\8, 1768.421 | ||
|28\8 | |46\13, 1780.645 | ||
1768 | | rowspan="2" |'''18\5,''' '''1800''' | ||
|46\13 | |44\12, 1820.690 | ||
1780 | |26\7, 1835.294 | ||
| rowspan="2" |'''18\5''' | |34\9, 1854.{{Overline|54}} | ||
'''1800''' | |||
|44\12 | |||
1820 | |||
|26\7 | |||
1835 | |||
|34\9 | |||
1854.{{Overline|54}} | |||
|- | |- | ||
|'''Cf''' | |'''Cf''' | ||
|'''ɛf''' | |'''ɛf''' | ||
|'''40\11''' | |'''40\11,''' '''1846.154''' | ||
'''1846 | |'''29\8,''' '''1831.579''' | ||
|'''29\8''' | |'''47\13,''' '''1819.355''' | ||
|'''43\12,''' '''1779.310''' | |||
'''1831 | |'''25\7,''' '''1764.706''' | ||
|'''47\13''' | |'''32\9,''' '''1745.{{Overline|45}}''' | ||
'''1819 | |||
|'''43\12''' | |||
'''1779 | |||
|'''25\7''' | |||
'''1764 | |||
|'''32\9''' | |||
'''1745.{{Overline|45}}''' | |||
|- | |- | ||
|C | |C | ||
|ɛ | |ɛ | ||
|41\11 | |41\11, 1892.308 | ||
1892 | |30\8, 1894.737 | ||
|30\8 | |49\13, 1896.774 | ||
1894 | |19\5, 1900 | ||
|49\13 | |46\12, 1903.448 | ||
1896 | |27\7, 1905.882 | ||
|19\5 | |35\9, 1909.{{Overline|09}} | ||
1900 | |||
|46\12 | |||
1903 | |||
|27\7 | |||
1905 | |||
|35\9 | |||
1909.{{Overline|09}} | |||
|- | |- | ||
|C# | |C# | ||
|ɛ# | |ɛ# | ||
|42\11 | |42\11, 1938.462 | ||
1938 | | rowspan="2" |31\8, 1957.895 | ||
| rowspan="2" |31\8 | |51\13, 1974.194 | ||
1957 | |20\5, 2000 | ||
|51\13 | |49\12, 2027.586 | ||
1974 | |29\7, 2047.059 | ||
|20\5 | |38\9, 2072.{{Overline|72}} | ||
2000 | |||
|49\12 | |||
2027 | |||
|29\7 | |||
2047 | |||
|38\9 | |||
2072.{{Overline|72}} | |||
|- | |- | ||
|Df | |Df | ||
|Af | |Af | ||
|43\11 | |43\11, 1984.615 | ||
1984 | |50\13, 1935.484 | ||
|50\13 | |19\5, 1900 | ||
1935 | |45\12, 1862.069 | ||
|19\5 | |26\7, 1835.294 | ||
1900 | |33\9, 1800 | ||
|45\12 | |||
1862 | |||
|26\7 | |||
1835 | |||
|33\9 | |||
1800 | |||
|- | |- | ||
!D | !D | ||
!A | !A | ||
!44\11 | !44\11, 2030.769 | ||
2030 | !32\8, 2021.053 | ||
!32\8 | !52\13, 2012.903 | ||
!20\5, 2000 | |||
2021 | !48\12, 1986.207 | ||
!52\13 | !28\7, 1976.471 | ||
2012 | !36\9, 1963.{{Overline|63}} | ||
!20\5 | |||
2000 | |||
!48\12 | |||
1986 | |||
!28\7 | |||
1976 | |||
!36\9 | |||
1963.{{Overline|63}} | |||
|- | |- | ||
|D# | |D# | ||
|A# | |A# | ||
|45\11 | |45\11, 2076.923 | ||
2076 | |33\8, 2084.211 | ||
|33\8 | | 54\13, 2090.323 | ||
2084 | | rowspan="2" |21\5, 2100 | ||
|54\13 | |51\12, 2110.345 | ||
2090 | |30\7, 2117.647 | ||
| rowspan="2" |21\5 | |39\9, 2127.{{Overline|27}} | ||
2100 | |||
|51\12 | |||
2110 | |||
|30\7 | |||
2117 | |||
|39\9 | |||
2127.{{Overline|27}} | |||
|- | |- | ||
|Ef | |Ef | ||
|Bf | |Bf | ||
|47\11 | |47\11, 2169.231 | ||
2169 | |34\8, 2147.368 | ||
|34\8 | |55\13, 2129.032 | ||
2147 | |50\12, 2068.966 | ||
|55\13 | |29\7, 2047.059 | ||
2129 | |37\9, 2018.{{Overline|18}} | ||
|50\12 | |||
2068 | |||
|29\7 | |||
2047 | |||
|37\9 | |||
2018.{{Overline|18}} | |||
|- | |- | ||
|'''E''' | |'''E''' | ||
|'''B''' | |'''B''' | ||
|'''48\11''' | |'''48\11,''' '''2215.385''' | ||
'''2215 | |'''35\8,''' '''2210.526''' | ||
|'''35\8''' | |'''57\13,''' '''2206.452''' | ||
'''2210 | |'''22\5,''' '''2200''' | ||
|'''57\13''' | |'''53\12,''' '''2193.103''' | ||
'''2206 | |'''31\7,''' '''2188.235''' | ||
|'''22\5''' | |'''40\9,''' '''2181.{{Overline|81}}''' | ||
'''2200''' | |||
|'''53\12''' | |||
'''2193 | |||
|'''31\7''' | |||
'''2188 | |||
|'''40\9''' | |||
'''2181.{{Overline|81}}''' | |||
|- | |- | ||
|E# | |E# | ||
|B# | |B# | ||
|49\11 | |49\11, 2261.538 | ||
2261 | |36\8, 2273.684 | ||
|36\8 | |59\13, 2283.871 | ||
2273 | | rowspan="2" |'''23\5,''' '''2300''' | ||
|59\13 | |56\12, 2317.241 | ||
|33\7, 2329.412 | |||
| rowspan="2" |'''23\5''' | |43\9, 2345.{{Overline|45}} | ||
'''2300''' | |||
|56\12 | |||
|33\7 | |||
2329 | |||
|43\9 | |||
2345.{{Overline|45}} | |||
|- | |- | ||
|'''Ff''' | |'''Ff''' | ||
|'''Cf''' | |'''Cf''' | ||
|'''51\11''' | |'''51\11,''' '''2353.846''' | ||
'''2353 | |'''37\8,''' '''2336.842''' | ||
|'''37\8''' | |'''61\13,''' '''2322.581''' | ||
'''2336 | |'''55\12,''' '''2275.864''' | ||
|'''61\13''' | |'''32\7,''' '''2258.824''' | ||
'''2322 | |'''41\9,''' '''2236.{{Overline|36}}''' | ||
|'''55\12''' | |||
'''2275 | |||
|'''32\7''' | |||
'''2258 | |||
|'''41\9''' | |||
'''2236.{{Overline|36}}''' | |||
|- | |- | ||
|F | |F | ||
|C | |C | ||
|52\11 | | 52\11, 2400 | ||
2400 | |38\8, 2400 | ||
|38\8 | |62\13, 2400 | ||
2400 | |24\5, 2400 | ||
|62\13 | | 58\12, 2400 | ||
2400 | |34\7, 2400 | ||
|24\5 | | 44\9, 2400 | ||
2400 | |||
|58\12 | |||
2400 | |||
|34\7 | |||
2400 | |||
|44\9 | |||
2400 | |||
|- | |- | ||
|F# | |F# | ||
|C# | |C# | ||
|53\11 | |53\11, 2446.154 | ||
2446 | | rowspan="2" |39\8, 2463.158 | ||
| rowspan="2" |39\8 | |64\13, 2477.419 | ||
2463 | |25\5, 2500 | ||
|64\13 | |61\12, 2524.138 | ||
2477 | |36\7, 2541.176 | ||
|25\5 | |47/9, 2563.{{Overline|63}} | ||
2500 | |||
|61\12 | |||
2524 | |||
|36\7 | |||
2541 | |||
|47/9 | |||
2563.{{Overline|63}} | |||
|- | |- | ||
|1f | |1f | ||
|Df | |Df | ||
|54\11 | |54\11, 2492.308 | ||
2492 | |63\13, 2438.710 | ||
|63\13 | |24\5, 2400 | ||
2438 | |57\12, 2358.621 | ||
|24\5 | |33\7, 2329.412 | ||
2400 | |42\9, 2390.{{Overline|90}} | ||
|57\12 | |||
2358 | |||
|33\7 | |||
2329 | |||
|42\9 | |||
2390.{{Overline|90}} | |||
|- | |- | ||
! 1 | |||
!1 | |||
!D | !D | ||
!55\11 | !55\11, 2538.462 | ||
2538 | !40\8, 2526.316 | ||
!40\8 | ! 65\13, 2516.129 | ||
2526 | !25\5, 2500 | ||
!65\13 | !60\12, 2482.759 | ||
2516 | !35\7, 2470.588 | ||
!25\5 | !45\9, 2454.{{Overline|54}} | ||
2500 | |||
!60\12 | |||
2482 | |||
!35\7 | |||
2470 | |||
!45\9 | |||
2454.{{Overline|54}} | |||
|- | |- | ||
|1# | |1# | ||
|D# | |D# | ||
|56\11 | |56\11, 2584.615 | ||
2584 | |41\8, 2589.474 | ||
|41\8 | |67\13, 2593.548 | ||
2589 | | rowspan="2" |26\5, 2600 | ||
|67\13 | |63\12, 2606.897 | ||
2593 | |37\7, 2611.765 | ||
| rowspan="2" |26\5 | |48\9, 2618.{{Overline|18}} | ||
2600 | |||
|63\12 | |||
2606 | |||
|37\7 | |||
2611 | |||
|48\9 | |||
2618.{{Overline|18}} | |||
|- | |- | ||
|2f | |2f | ||
|Ef | |Ef | ||
|58\11 | |58\11, 2676.923 | ||
2676 | | 42\8, 2652.632 | ||
|42\8 | |69\13, 2670.968 | ||
2652 | |62\12, 2565.517 | ||
|69\13 | |36\7, 2541.176 | ||
2670 | |46\9, 2509.{{Overline|09}} | ||
|62\12 | |||
2565 | |||
|36\7 | |||
2541 | |||
|46\9 | |||
2509.{{Overline|09}} | |||
|- | |- | ||
|'''2''' | |'''2''' | ||
|'''E''' | |'''E''' | ||
|'''59\11''' | |'''59\11,''' '''2723.077''' | ||
'''2723 | |'''43\8,''' '''2715.789''' | ||
|'''43\8''' | |'''70\13,''' '''2709.677''' | ||
'''2715 | |'''27\5,''' '''2700''' | ||
|'''70\13''' | |'''65\12,''' '''2689.655''' | ||
'''2709 | |'''38\7,''' '''2682.353''' | ||
|'''27\5''' | |'''49\9,''' '''2672.{{Overline|72}}''' | ||
'''2700''' | |||
|'''65\12''' | |||
'''2689 | |||
|'''38\7''' | |||
'''2682 | |||
|'''49\9''' | |||
'''2672.{{Overline|72}}''' | |||
|- | |- | ||
|2# | |2# | ||
|E# | |E# | ||
|60\11 | |60\11, 2769.231 | ||
|44\8, 2778.947 | |||
2769 | |72\13, 2787.097 | ||
|44\8 | | rowspan="2" |'''28\5,''' '''2800''' | ||
2778 | |68\12, 2813.793 | ||
|72\13 | |40\7, 2823.529 | ||
2787 | |52\9, 2836.{{Overline|36}} | ||
| rowspan="2" |'''28\5''' | |||
'''2800''' | |||
|68\12 | |||
2813 | |||
|40\7 | |||
2823 | |||
|52\9 | |||
2836.{{Overline|36}} | |||
|- | |- | ||
|'''3f''' | |'''3f''' | ||
|'''Ff''' | |'''Ff''' | ||
|'''62\11''' | |'''62\11,''' '''2861.538''' | ||
'''2861 | |'''45\8,''' '''2842.105''' | ||
|'''45\8''' | |'''73\13,''' '''2825.806''' | ||
'''2842 | |'''67\12,''' '''2772.034''' | ||
|'''73\13''' | |'''39\7,''' '''2752.941''' | ||
'''2825 | |'''50\9,''' '''2727.{{Overline|27}}''' | ||
|'''67\12''' | |||
'''2772 | |||
|'''39\7''' | |||
'''2752 | |||
|'''50\9''' | |||
'''2727.{{Overline|27}}''' | |||
|- | |- | ||
| 3 | |||
|F | |F | ||
|63\11, 2907.692 | |||
|46\8, 2905.263 | |||
|75\13, 2903.226 | |||
|63\11 | |29\5, 2900 | ||
2907 | |70\12, 2896.552 | ||
|46\8 | |41\7, 2894.118 | ||
2905 | |53\9, 2890.{{Overline|90}} | ||
|75\13 | |||
2903 | |||
|29\5 | |||
2900 | |||
|70\12 | |||
2896 | |||
|41\7 | |||
2894 | |||
|53\9 | |||
2890.{{Overline|90}} | |||
|- | |- | ||
|3# | |3# | ||
|F# | |F# | ||
|64\11 | |64\11, 2953.846 | ||
2953 | | rowspan="2" |47\8, 2968.421 | ||
| rowspan="2" |47\8 | |77\13, 2980.645 | ||
2968 | |30\5, 3000 | ||
|77\13 | |73\12, 3020.690 | ||
2980 | |43\7, 3035.294 | ||
|30\5 | |55\9, 3000 | ||
3000 | |||
|73\12 | |||
3020 | |||
|43\7 | |||
3035 | |||
|55\9 | |||
3000 | |||
|- | |- | ||
|4f | |4f | ||
|0f | |0f | ||
|65\11 | |65\11, 3000 | ||
3000 | |76\13, 2941.935 | ||
|76\13 | |29\5, 2900 | ||
2941 | |69\29, 2855.172 | ||
|29\5 | |40\7, 2823.529 | ||
2900 | |52\9, 2836.{{Overline|36}} | ||
|69\29 | |||
2855 | |||
|40\7 | |||
2823 | |||
|52\9 | |||
2836.{{Overline|36}} | |||
|- | |- | ||
!4 | !4 | ||
!0 | !0 | ||
!66\11 | !66\11, 3046.154 | ||
3046 | !48\8, 30'''31.579''' | ||
!48\8 | !78\13, 30'''19.355''' | ||
30'''31 | !30\5, 3000 | ||
!78\13 | !72\12, 29'''79.310''' | ||
30'''19 | !42\7, 2964.706 | ||
!30\5 | !54\9, 2945.{{Overline|45}} | ||
3000 | |||
!72\12 | |||
29'''79 | |||
!42\7 | |||
2964 | |||
!54\9 | |||
2945.{{Overline|45}} | |||
|} | |} | ||
==Intervals== | ==Intervals== | ||
Line 1,256: | Line 1,131: | ||
|perfect fourth | |perfect fourth | ||
|- | |- | ||
|1 | | 1 | ||
|Mib, Sib | |Mib, Sib | ||
|diminished third | |diminished third | ||
Line 1,274: | Line 1,149: | ||
|3 | |3 | ||
|Dob, Solb | |Dob, Solb | ||
|diminished fourth | | diminished fourth | ||
| -3 | | -3 | ||
|Do#, Sol# | |Do#, Sol# | ||
Line 1,332: | Line 1,207: | ||
!pattern | !pattern | ||
!notation | !notation | ||
!2nd | ! 2nd | ||
!3rd | !3rd | ||
|- | |- | ||
Line 1,375: | Line 1,250: | ||
[[Optimal ET sequence]]: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3) | [[Optimal ET sequence]]: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3) | ||
====Scale tree==== | ====Scale tree ==== | ||
The spectrum looks like this: | The spectrum looks like this: | ||
{| class="wikitable" | {| class="wikitable" | ||
! colspan="3" |Generator | ! colspan="3" |Generator | ||
(bright) | (bright) | ||
!Cents | !Cents | ||
!L | !L | ||
!s | !s | ||
Line 1,389: | Line 1,264: | ||
| | | | ||
| | | | ||
|171 | |171.429 | ||
|1 | | 1 | ||
|1 | |1 | ||
|1.000 | |1.000 | ||
Line 1,398: | Line 1,273: | ||
| | | | ||
| | | | ||
|180 | |180.000 | ||
|6 | |6 | ||
|5 | |5 | ||
|1.200 | |1.200 | ||
| | | | ||
|- | |- | ||
Line 1,425: | Line 1,291: | ||
|14\39 | |14\39 | ||
| | | | ||
|182 | |182.609 | ||
|14 | |14 | ||
|11 | |11 | ||
Line 1,434: | Line 1,300: | ||
|9\25 | |9\25 | ||
| | | | ||
|183 | |183.051 | ||
|9 | |9 | ||
|7 | |7 | ||
Line 1,443: | Line 1,309: | ||
| | | | ||
| | | | ||
|184 | |184.615 | ||
|4 | |4 | ||
|3 | |3 | ||
|1.333 | |1.333 | ||
| | | | ||
|- | |- | ||
Line 1,461: | Line 1,318: | ||
|11\30 | |11\30 | ||
| | | | ||
|185 | |185.915 | ||
|11 | |11 | ||
|8 | | 8 | ||
|1.375 | |1.375 | ||
| | | | ||
Line 1,470: | Line 1,327: | ||
|7\19 | |7\19 | ||
| | | | ||
|186.{{Overline|6}} | | 186.{{Overline|6}} | ||
|7 | |7 | ||
|5 | |5 | ||
|1.400 | | 1.400 | ||
| | | | ||
|- | |- | ||
Line 1,488: | Line 1,345: | ||
|13\35 | |13\35 | ||
| | | | ||
|187 | |187.952 | ||
|13 | |13 | ||
|9 | |9 | ||
Line 1,497: | Line 1,354: | ||
|16\43 | |16\43 | ||
| | | | ||
|188 | |188.253 | ||
|16 | |16 | ||
|11 | |11 | ||
Line 1,506: | Line 1,363: | ||
| | | | ||
| | | | ||
|189 | |189.474 | ||
|3 | | 3 | ||
|2 | |2 | ||
|1.500 | |1.500 | ||
|Mahuric-Meantone starts here | | Mahuric-Meantone starts here | ||
|- | |- | ||
| | | | ||
Line 1,516: | Line 1,373: | ||
| | | | ||
|190.{{Overline|90}} | |190.{{Overline|90}} | ||
|14 | | 14 | ||
|9 | |9 | ||
|1.556 | |1.556 | ||
Line 1,524: | Line 1,381: | ||
|11\29 | |11\29 | ||
| | | | ||
|191 | |191.304 | ||
|11 | |11 | ||
|7 | | 7 | ||
|1.571 | |1.571 | ||
| | | | ||
Line 1,533: | Line 1,390: | ||
|8\21 | |8\21 | ||
| | | | ||
|192 | |192.000 | ||
|8 | |8 | ||
|5 | |5 | ||
Line 1,542: | Line 1,399: | ||
|5\13 | |5\13 | ||
| | | | ||
|193 | | 193.548 | ||
|5 | |5 | ||
|3 | |3 | ||
Line 1,560: | Line 1,417: | ||
|7\18 | |7\18 | ||
| | | | ||
|195 | |195.348 | ||
|7 | |7 | ||
|4 | |4 | ||
Line 1,578: | Line 1,435: | ||
|11\28 | |11\28 | ||
| | | | ||
|197 | |197.015 | ||
|11 | | 11 | ||
|6 | |6 | ||
|1.833 | |1.833 | ||
Line 1,587: | Line 1,444: | ||
|13\33 | |13\33 | ||
| | | | ||
|197 | |197.468 | ||
|13 | |13 | ||
|7 | |7 | ||
Line 1,594: | Line 1,451: | ||
|- | |- | ||
| | | | ||
|15\38 | | 15\38 | ||
| | | | ||
|197 | |197.802 | ||
|15 | | 15 | ||
|8 | |8 | ||
|1.875 | |1.875 | ||
Line 1,605: | Line 1,462: | ||
|17\43 | |17\43 | ||
| | | | ||
|198 | |198.058 | ||
|17 | |17 | ||
|9 | |9 | ||
Line 1,614: | Line 1,471: | ||
|19\48 | |19\48 | ||
| | | | ||
|198 | |198.261 | ||
|19 | |19 | ||
|10 | |10 | ||
Line 1,623: | Line 1,480: | ||
|21\53 | |21\53 | ||
| | | | ||
|198 | |198.425 | ||
|21 | |21 | ||
|11 | |11 | ||
Line 1,632: | Line 1,489: | ||
|23\58 | |23\58 | ||
| | | | ||
|198 | |198.561 | ||
|23 | |23 | ||
|12 | |12 | ||
Line 1,641: | Line 1,498: | ||
|25\63 | |25\63 | ||
| | | | ||
|198 | |198.675 | ||
|25 | |25 | ||
|13 | |13 | ||
Line 1,650: | Line 1,507: | ||
|27\68 | |27\68 | ||
| | | | ||
|198 | |198.773 | ||
|27 | |27 | ||
|14 | |14 | ||
Line 1,659: | Line 1,516: | ||
|29\73 | |29\73 | ||
| | | | ||
|198 | |198.857 | ||
|29 | |29 | ||
|15 | |15 | ||
Line 1,668: | Line 1,525: | ||
|31\78 | |31\78 | ||
| | | | ||
|198 | |198.930 | ||
|31 | |31 | ||
|16 | |16 | ||
Line 1,677: | Line 1,534: | ||
|33\83 | |33\83 | ||
| | | | ||
|198 | | 198.995 | ||
|33 | |33 | ||
|17 | |17 | ||
Line 1,686: | Line 1,543: | ||
|35\88 | |35\88 | ||
| | | | ||
|199 | | 199.009 | ||
|35 | |35 | ||
|18 | |18 | ||
Line 1,713: | Line 1,570: | ||
|15\37 | |15\37 | ||
| | | | ||
|202 | |202.247 | ||
|15 | |15 | ||
|7 | |7 | ||
Line 1,722: | Line 1,579: | ||
|13\32 | |13\32 | ||
| | | | ||
|202 | |202.597 | ||
|13 | |13 | ||
|6 | |6 | ||
Line 1,731: | Line 1,588: | ||
|11\27 | |11\27 | ||
| | | | ||
|203 | |203.077 | ||
|11 | |11 | ||
|5 | |5 | ||
Line 1,740: | Line 1,597: | ||
|9\22 | |9\22 | ||
| | | | ||
|203 | |203.774 | ||
|9 | |9 | ||
|4 | |4 | ||
Line 1,749: | Line 1,606: | ||
|7\17 | |7\17 | ||
| | | | ||
|204 | |204.878 | ||
|7 | |7 | ||
|3 | |3 | ||
Line 1,758: | Line 1,615: | ||
| | | | ||
|12\29 | |12\29 | ||
|205 | |205.714 | ||
|12 | | 12 | ||
|5 | |5 | ||
|2.400 | |2.400 | ||
Line 1,767: | Line 1,624: | ||
|5\12 | |5\12 | ||
| | | | ||
|206 | |206.897 | ||
|5 | |5 | ||
|2 | |2 | ||
Line 1,776: | Line 1,633: | ||
| | | | ||
|18\43 | |18\43 | ||
|207 | |207.693 | ||
|18 | |18 | ||
|7 | |7 | ||
Line 1,785: | Line 1,642: | ||
| | | | ||
|13\31 | |13\31 | ||
|208 | |208.000 | ||
|13 | |13 | ||
|5 | |5 | ||
Line 1,794: | Line 1,651: | ||
|8\19 | |8\19 | ||
| | | | ||
|208 | |208.696 | ||
|8 | |8 | ||
|3 | |3 | ||
Line 1,803: | Line 1,660: | ||
|11\26 | |11\26 | ||
| | | | ||
|209 | |209.524 | ||
|11 | |11 | ||
|4 | |4 | ||
Line 1,810: | Line 1,667: | ||
|- | |- | ||
| | | | ||
|14\33 | | 14\33 | ||
| | | | ||
|210 | |210.000 | ||
|14 | |14 | ||
|5 | |5 | ||
Line 1,821: | Line 1,678: | ||
| | | | ||
| | | | ||
|211 | |211.755 | ||
|3 | |3 | ||
|1 | |1 | ||
Line 1,830: | Line 1,687: | ||
|22\51 | |22\51 | ||
| | | | ||
|212 | |212.903 | ||
|22 | |22 | ||
|7 | |7 | ||
Line 1,839: | Line 1,696: | ||
|19\44 | |19\44 | ||
| | | | ||
|213 | |213.084 | ||
|19 | | 19 | ||
|6 | |6 | ||
|3.167 | |3.167 | ||
Line 1,848: | Line 1,705: | ||
|16\37 | |16\37 | ||
| | | | ||
|213. | |213.{{Overline|3}} | ||
|16 | |16 | ||
|5 | |5 | ||
Line 1,857: | Line 1,714: | ||
|13\30 | |13\30 | ||
| | | | ||
|213 | |213.699 | ||
|13 | |13 | ||
|4 | |4 | ||
Line 1,866: | Line 1,723: | ||
|10\23 | |10\23 | ||
| | | | ||
|214 | |214.286 | ||
|10 | |10 | ||
|3 | |3 | ||
Line 1,875: | Line 1,732: | ||
|7\16 | |7\16 | ||
| | | | ||
|215 | |215.385 | ||
|7 | |7 | ||
|2 | |2 | ||
Line 1,884: | Line 1,741: | ||
|11\25 | |11\25 | ||
| | | | ||
|216 | |216.393 | ||
|11 | |11 | ||
|3 | |3 | ||
Line 1,893: | Line 1,750: | ||
|15\34 | |15\34 | ||
| | | | ||
|216 | |216.867 | ||
|15 | |15 | ||
|4 | |4 | ||
Line 1,902: | Line 1,759: | ||
|19\43 | |19\43 | ||
| | | | ||
|217 | |217.143 | ||
|19 | |19 | ||
|5 | |5 | ||
Line 1,920: | Line 1,777: | ||
|13\29 | |13\29 | ||
| | | | ||
|219 | |219.718 | ||
|13 | |13 | ||
|3 | |3 | ||
Line 1,929: | Line 1,786: | ||
|9\20 | |9\20 | ||
| | | | ||
|220 | |220.408 | ||
|9 | |9 | ||
|2 | |2 | ||
Line 1,938: | Line 1,795: | ||
|14\31 | |14\31 | ||
| | | | ||
|221 | |221.053 | ||
|14 | |14 | ||
|3 | |3 | ||
Line 1,956: | Line 1,813: | ||
|11\24 | |11\24 | ||
| | | | ||
|223 | |223.728 | ||
|11 | |11 | ||
|2 | |2 | ||
Line 1,965: | Line 1,822: | ||
|17\37 | |17\37 | ||
| | | | ||
|224 | |224.176 | ||
|17 | |17 | ||
|3 | |3 | ||
Line 1,974: | Line 1,831: | ||
| | | | ||
| | | | ||
|225 | |225.000 | ||
|6 | |6 | ||
|1 | |1 | ||
Line 1,980: | Line 1,837: | ||
| | | | ||
|- | |- | ||
|1\3 | | 1\3 | ||
| | | | ||
| | | | ||
|240 | |240.000 | ||
|1 | |1 | ||
|0 | |0 | ||
Line 1,990: | Line 1,847: | ||
|} | |} | ||
== See also == | ==See also== | ||
[[2L 1s (4/3-equivalent)]] - idealized tuning | [[2L 1s (4/3-equivalent)]] - idealized tuning | ||
Revision as of 01:11, 10 July 2023
2L 1s<perfect fourth>, is a perfect fourth-repeating MOS scale. The notation "<perfect fourth>" means the period of the MOS is a perfect fourth, disambiguating it from octave-repeating 2L 1s.
The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).
In the fourth-repeating version of the diatonic scale, each tone has a 4/3 perfect fourth above it. The scale has one major chord and two minor chords.
Basic diatonic is in 5ed4/3, which is a very good fourth-based equal tuning similar to 12edo.
Notation
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the genchain harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth notation and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Fourth | Seventh | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
Do#, Sol# | Sol# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.63 |
Reb, Lab | Lab | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.54 | |
Re, La | La | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.18 |
Re#, La# | La# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.81 |
Mib, Sib | Sib | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.72 | |
Mi, Si | Si | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.36 |
Mi#, Si# | Si# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
Dob, Solb | Dob | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.27 | |
Do, Sol | Do | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.90 |
Do#, Sol# | Do# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.54 |
Reb, Lab | Reb | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.45 | |
Re, La | Re | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.09 |
Re#, La# | Re# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.294 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.72 |
Mib, Sib | Mib | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.63 | |
Mi, Si | Mi | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.27 |
Mi#, Si# | Mi# | 20\11, 923.077 | 15\8, 947.378 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.90 |
Dob, Solb | Solb | 21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.18 | |
Do, Sol | Sol | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9,981.81 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Mahur | Bijou | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
G# | 0#, E# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.63 |
Jf, Af | 1b, 1d | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.54 | |
J, A | 1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.18 |
J#, A# | 1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.968 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.81 |
Af, Bf | 2b, 2d | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.72 | |
A, B | 2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.097 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.36 |
A#, B# | 2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
Bb, Cf | 3b, 3d | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.27 | |
B, C | 3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.90 |
B#, C# | 3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.54 |
Cf, Qf | 4b, 4d | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.45 | |
C, Q | 4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.09 |
C#, Q# | 4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.72 |
Qf, Df | 5b, 5d | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.63 | |
Q, D | 5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.27 |
Q#, D# | 5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.90 |
Df, Sf | 6b, 6d | 21\11, 969.231 | 24\13, 929.033 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.18 | |
D, S | 6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.81 |
D#, S# | 6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.45 |
Ef | 7b, 7d | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.36 | |
E | 7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
E# | 7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.63 |
Ff | 8b, Gd | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.54 | |
F | 8, G | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.18 |
F# | 8#, G# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.81 |
Gf | 9b, Ad | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.09 | |
G | 9, A | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.72 |
G# | 9#, A# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.36 |
Jf, Af | Xb, Bd | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
J, A | X, B | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.90 |
J#, A# | X#, B# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.54 |
Af, Bf | Eb, Dd | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.45 | |
A, B | E, D | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.09 |
A#, B# | E#, D# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.72 |
Bb, Cf | 0b, Ed | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
B, C | 0, E | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.63 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Hyperionic | Subsextal | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
1# | 0# | 1\11, 46.154 | 1\8, 63.158 | 2\13, 77.419 | 1\5, 100 | 3\12, 124.138 | 2\7, 141.176 | 3\9, 163.63 |
2f | 1f | 3\11, 138.462 | 2\8, 126.316 | 3\13, 116.129 | 2\12, 82.759 | 1\7, 70.588 | 1\9, 54.54 | |
2 | 1 | 4\11, 184.615 | 3\8, 189.474 | 5\13, 193.548 | 2\5, 200 | 5\12, 206.897 | 3\7, 211.765 | 4\9, 218.18 |
2# | 1# | 5\11, 230.769 | 4\8, 252.632 | 7\13, 270.967 | 3\5, 300 | 8\12, 331.034 | 5\7, 352.941 | 7\9, 381.81 |
3f | 2f | 7\11, 323.077 | 5\8, 315.789 | 8\13, 309.677 | 7\12, 289.655 | 4\7, 282.353 | 5\9, 272.72 | |
3 | 2 | 8\11, 369.231 | 6\8, 378.947 | 10\13, 387.098 | 4\5, 400 | 10\12, 413.793 | 6\7, 423.529 | 8\9, 436.36 |
3# | 2# | 9\11, 415.385 | 7\8, 442.105 | 12\13, 464.516 | 5\5, 500 | 13\12, 537.069 | 8\7, 564.705 | 11\9, 600 |
4f | 3f | 10\11, 461.538 | 11\13, 425.806 | 4\5, 400 | 9\12, 372.414 | 5\7, 352.941 | 6\9, 327.27 | |
4 | 3 | 11\11, 507.692 | 8\8, 505.263 | 13\13, 503.226 | 5\5, 500 | 12\12, 496.552 | 7\7, 494.118 | 9\9, 490.90 |
4# | 3# | 12\11, 553.846 | 9\8, 568.421 | 15\13, 580.645 | 6\5, 600 | 15\12, 620.690 | 9\7, 635.294 | 12\9, 654.54 |
5f | 4f | 14\11, 646.154 | 10\8, 631.579 | 16\13, 619.355 | 14\12, 579.310 | 8\7, 564.706 | 10\9, 545.45 | |
5 | 4 | 15\11, 692.308 | 11\8 694.737 | 18\13, 696.774 | 7\5, 700 | 17\12, 703.448 | 10\7, 705.882 | 13\9, 709.09 |
5# | 4# | 16\11, 738.462 | 12\8, 757.895 | 20\13, 774.194 | 8\5, 800 | 20\12, 827.586 | 12\7, 847.059 | 16\9, 872.72 |
6f | 5f | 18\11, 830.769 | 13\8, 821.053 | 21\13, 812.903 | 19\12, 786.207 | 11\7, 776.471 | 14\9, 763.63 | |
6 | 5 | 19\11, 876.923 | 14\8, 884.211 | 23\13, 890.323 | 9\5, 900 | 22\12, 910.345 | 13\7, 917.647 | 17\9, 927.27 |
6# | 5# | 20\11, 923.077 | 15\8, 947.368 | 25\13, 967.742 | 10\5, 1000 | 25\12, 1034.483 | 15\7, 1058.824 | 20\9, 1090.90 |
7f | 6f | 21\11, 969.231 | 24\13, 929.032 | 9\5, 900 | 21\12, 868.966 | 11\7, 776.471 | 15\9, 818.18 | |
7 | 6 | 22\11, 1015.385 | 16\8, 1010.526 | 26\13, 1006.452 | 10\5, 1000 | 24\12, 993.103 | 14\7, 988.235 | 18\9, 981.81 |
7# | 6# | 23\11, 1061.538 | 17\8, 1073.684 | 28\13, 1083.871 | 11\5, 1100 | 27\12, 1117.241 | 16\7, 1129.412 | 21\9, 1145.45 |
8f | 7f | 25\11, 1153.846 | 18\8, 1136.842 | 29\13, 1122.581 | 26\12, 1075.862 | 15\7, 1058.824 | 19\9, 1036.36 | |
8 | 7 | 26\11, 1200 | 19\8, 1200 | 31\13, 1200 | 12\5, 1200 | 29\12, 1200 | 17\7, 1200 | 22\9, 1200 |
8# | 7# | 27\11, 1246.154 | 20\8, 1263.158 | 33\13, 1277.419 | 13\5, 1300 | 32\12, 1324.138 | 19\7, 1341.176 | 25\9, 1363.63 |
9f | 8f | 29\11, 1338.462 | 21\8, 1326.316 | 34\13, 1316.129 | 31\12, 1282.759 | 18\7, 1270.588 | 23\9, 1254.54 | |
9 | 8 | 30\11, 1384.615 | 22\8, 1389.474 | 36\13, 1393.548 | 14\5, 1400 | 34\12, 1406.897 | 20\7, 1411.765 | 26\9, 1418.18 |
9# | 8# | 31\11, 1430.769 | 23\8, 1452.632 | 38\13, 1470.968 | 15\5, 1500 | 37\12, 1531.034 | 22\7, 1552.941 | 29\9, 1581.81 |
Af | 9f | 32\11, 1476.923 | 37\13, 1432.258 | 14\5, 1400 | 33\12, 1365.517 | 19\7, 1341.176 | 24\9, 1309.09 | |
A | 9 | 33\11, 1523.077 | 24\8, 1515.789 | 39\13, 1509.677 | 15\5, 1500 | 36\12, 1489.655 | 21\7, 1482.353 | 27\9, 1472.72 |
A# | 9# | 34\11, 1569.231 | 25\8, 1578.947 | 41\13, 1587.097 | 16\5, 1600 | 39\12, 1613.793 | 23\7, 1623.529 | 30\9, 1636.36 |
Bf | Xb | 36\11, 1661.538 | 26\8, 1642.105 | 42\13, 1625.806 | 38\12, 1572.034 | 22\7, 1552.941 | 28\9, 1527.27 | |
B | X | 37\11, 1707.692 | 27\8, 1705.263 | 44\13, 1703.226 | 17\5, 1700 | 41\12, 1696.552 | 24\7, 1694.118 | 31\9, 1690.90 |
B# | X# | 38\11, 1753.846 | 28\8, 1768.421 | 46\13, 1780.645 | 18\5, 1800 | 44\12, 1820.690 | 26\7, 1835.294 | 34\9, 1854.54 |
Cf | ɛf | 40\11, 1846.154 | 29\8, 1831.579 | 47\13, 1819.355 | 43\12, 1779.310 | 25\7, 1764.706 | 32\9, 1745.45 | |
C | ɛ | 41\11, 1892.308 | 30\8, 1894.737 | 49\13, 1896.774 | 19\5, 1900 | 46\12, 1903.448 | 27\7, 1905.882 | 35\9, 1909.09 |
C# | ɛ# | 42\11, 1938.462 | 31\8, 1957.895 | 51\13, 1974.194 | 20\5, 2000 | 49\12, 2027.586 | 29\7, 2047.059 | 38\9, 2072.72 |
Df | Af | 43\11, 1984.615 | 50\13, 1935.484 | 19\5, 1900 | 45\12, 1862.069 | 26\7, 1835.294 | 33\9, 1800 | |
D | A | 44\11, 2030.769 | 32\8, 2021.053 | 52\13, 2012.903 | 20\5, 2000 | 48\12, 1986.207 | 28\7, 1976.471 | 36\9, 1963.63 |
D# | A# | 45\11, 2076.923 | 33\8, 2084.211 | 54\13, 2090.323 | 21\5, 2100 | 51\12, 2110.345 | 30\7, 2117.647 | 39\9, 2127.27 |
Ef | Bf | 47\11, 2169.231 | 34\8, 2147.368 | 55\13, 2129.032 | 50\12, 2068.966 | 29\7, 2047.059 | 37\9, 2018.18 | |
E | B | 48\11, 2215.385 | 35\8, 2210.526 | 57\13, 2206.452 | 22\5, 2200 | 53\12, 2193.103 | 31\7, 2188.235 | 40\9, 2181.81 |
E# | B# | 49\11, 2261.538 | 36\8, 2273.684 | 59\13, 2283.871 | 23\5, 2300 | 56\12, 2317.241 | 33\7, 2329.412 | 43\9, 2345.45 |
Ff | Cf | 51\11, 2353.846 | 37\8, 2336.842 | 61\13, 2322.581 | 55\12, 2275.864 | 32\7, 2258.824 | 41\9, 2236.36 | |
F | C | 52\11, 2400 | 38\8, 2400 | 62\13, 2400 | 24\5, 2400 | 58\12, 2400 | 34\7, 2400 | 44\9, 2400 |
F# | C# | 53\11, 2446.154 | 39\8, 2463.158 | 64\13, 2477.419 | 25\5, 2500 | 61\12, 2524.138 | 36\7, 2541.176 | 47/9, 2563.63 |
1f | Df | 54\11, 2492.308 | 63\13, 2438.710 | 24\5, 2400 | 57\12, 2358.621 | 33\7, 2329.412 | 42\9, 2390.90 | |
1 | D | 55\11, 2538.462 | 40\8, 2526.316 | 65\13, 2516.129 | 25\5, 2500 | 60\12, 2482.759 | 35\7, 2470.588 | 45\9, 2454.54 |
1# | D# | 56\11, 2584.615 | 41\8, 2589.474 | 67\13, 2593.548 | 26\5, 2600 | 63\12, 2606.897 | 37\7, 2611.765 | 48\9, 2618.18 |
2f | Ef | 58\11, 2676.923 | 42\8, 2652.632 | 69\13, 2670.968 | 62\12, 2565.517 | 36\7, 2541.176 | 46\9, 2509.09 | |
2 | E | 59\11, 2723.077 | 43\8, 2715.789 | 70\13, 2709.677 | 27\5, 2700 | 65\12, 2689.655 | 38\7, 2682.353 | 49\9, 2672.72 |
2# | E# | 60\11, 2769.231 | 44\8, 2778.947 | 72\13, 2787.097 | 28\5, 2800 | 68\12, 2813.793 | 40\7, 2823.529 | 52\9, 2836.36 |
3f | Ff | 62\11, 2861.538 | 45\8, 2842.105 | 73\13, 2825.806 | 67\12, 2772.034 | 39\7, 2752.941 | 50\9, 2727.27 | |
3 | F | 63\11, 2907.692 | 46\8, 2905.263 | 75\13, 2903.226 | 29\5, 2900 | 70\12, 2896.552 | 41\7, 2894.118 | 53\9, 2890.90 |
3# | F# | 64\11, 2953.846 | 47\8, 2968.421 | 77\13, 2980.645 | 30\5, 3000 | 73\12, 3020.690 | 43\7, 3035.294 | 55\9, 3000 |
4f | 0f | 65\11, 3000 | 76\13, 2941.935 | 29\5, 2900 | 69\29, 2855.172 | 40\7, 2823.529 | 52\9, 2836.36 | |
4 | 0 | 66\11, 3046.154 | 48\8, 3031.579 | 78\13, 3019.355 | 30\5, 3000 | 72\12, 2979.310 | 42\7, 2964.706 | 54\9, 2945.45 |
Intervals
Generators | Fourth notation | Interval category name | Generators | Notation of 4/3 inverse | Interval category name |
---|---|---|---|---|---|
The 3-note MOS has the following intervals (from some root): | |||||
0 | Do, Sol | perfect unison | 0 | Do, Sol | perfect fourth |
1 | Mib, Sib | diminished third | -1 | Re, La | perfect second |
2 | Reb, Lab | diminished second | -2 | Mi, Si | perfect third |
The chromatic 5-note MOS also has the following intervals (from some root): | |||||
3 | Dob, Solb | diminished fourth | -3 | Do#, Sol# | augmented unison (chroma) |
4 | Mibb, Sibb | doubly diminished third | -4 | Re#, La# | augmented second |
Genchain
The generator chain for this scale is as follows:
Mibb
Sibb |
Dob
Solb |
Reb
Lab |
Mib
Sib |
Do
Sol |
Re
La |
Mi
Si |
Do#
Sol# |
Re#
La# |
Mi#
Si# |
dd3 | d4 | d2 | d3 | P1 | P2 | P3 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fourth:
Mode | Scale | UDP | Interval type | |
---|---|---|---|---|
name | pattern | notation | 2nd | 3rd |
Major | LLs | 2|0 | P | P |
Minor | LsL | 1|1 | P | d |
Phrygian | LsLL | 0|2 | d | d |
Temperaments
The most basic rank-2 temperament interpretation of diatonic is Mahuric. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled root-2g-(p+g)
(p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations.
Mahuric-Meantone
Subgroup: 4/3.5/4.3/2
POL2 generator: ~9/8 = 193.6725¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 8ed4/3, 13ed4/3)
Mahuric-Superpyth
Subgroup: 4/3.9/7.3/2
POL2 generator: ~8/7 = 216.7325¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3)
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments | ||
---|---|---|---|---|---|---|---|
1\3 | 171.429 | 1 | 1 | 1.000 | Equalised | ||
6\17 | 180.000 | 6 | 5 | 1.200 | |||
5\14 | 181.81 | 5 | 4 | 1.250 | |||
14\39 | 182.609 | 14 | 11 | 1.273 | |||
9\25 | 183.051 | 9 | 7 | 1.286 | |||
4\11 | 184.615 | 4 | 3 | 1.333 | |||
11\30 | 185.915 | 11 | 8 | 1.375 | |||
7\19 | 186.6 | 7 | 5 | 1.400 | |||
10\27 | 187.5 | 10 | 7 | 1.429 | |||
13\35 | 187.952 | 13 | 9 | 1.444 | |||
16\43 | 188.253 | 16 | 11 | 1.4545 | |||
3\8 | 189.474 | 3 | 2 | 1.500 | Mahuric-Meantone starts here | ||
14\37 | 190.90 | 14 | 9 | 1.556 | |||
11\29 | 191.304 | 11 | 7 | 1.571 | |||
8\21 | 192.000 | 8 | 5 | 1.600 | |||
5\13 | 193.548 | 5 | 3 | 1.667 | |||
12\31 | 194.594 | 12 | 7 | 1.714 | |||
7\18 | 195.348 | 7 | 4 | 1.750 | |||
9\23 | 196.36 | 9 | 5 | 1.800 | |||
11\28 | 197.015 | 11 | 6 | 1.833 | |||
13\33 | 197.468 | 13 | 7 | 1.857 | |||
15\38 | 197.802 | 15 | 8 | 1.875 | |||
17\43 | 198.058 | 17 | 9 | 1.889 | |||
19\48 | 198.261 | 19 | 10 | 1.900 | |||
21\53 | 198.425 | 21 | 11 | 1.909 | |||
23\58 | 198.561 | 23 | 12 | 1.917 | |||
25\63 | 198.675 | 25 | 13 | 1.923 | |||
27\68 | 198.773 | 27 | 14 | 1.929 | |||
29\73 | 198.857 | 29 | 15 | 1.933 | |||
31\78 | 198.930 | 31 | 16 | 1.9375 | |||
33\83 | 198.995 | 33 | 17 | 1.941 | |||
35\88 | 199.009 | 35 | 18 | 1.944 | |||
2\5 | 200 | 2 | 1 | 2.000 | Mahuric-Meantone ends, Mahuric-Pythagorean begins | ||
17\42 | 201.9801 | 17 | 8 | 2.125 | |||
15\37 | 202.247 | 15 | 7 | 2.143 | |||
13\32 | 202.597 | 13 | 6 | 2.167 | |||
11\27 | 203.077 | 11 | 5 | 2.200 | |||
9\22 | 203.774 | 9 | 4 | 2.250 | |||
7\17 | 204.878 | 7 | 3 | 2.333 | |||
12\29 | 205.714 | 12 | 5 | 2.400 | |||
5\12 | 206.897 | 5 | 2 | 2.500 | Mahuric-Neogothic heartland is from here… | ||
18\43 | 207.693 | 18 | 7 | 2.571 | |||
13\31 | 208.000 | 13 | 5 | 2.600 | |||
8\19 | 208.696 | 8 | 3 | 2.667 | …to here | ||
11\26 | 209.524 | 11 | 4 | 2.750 | |||
14\33 | 210.000 | 14 | 5 | 2.800 | |||
3\7 | 211.755 | 3 | 1 | 3.000 | Mahuric-Pythagorean ends, Mahuric-Superpyth begins | ||
22\51 | 212.903 | 22 | 7 | 3.143 | |||
19\44 | 213.084 | 19 | 6 | 3.167 | |||
16\37 | 213.3 | 16 | 5 | 3.200 | |||
13\30 | 213.699 | 13 | 4 | 3.250 | |||
10\23 | 214.286 | 10 | 3 | 3.333 | |||
7\16 | 215.385 | 7 | 2 | 3.500 | |||
11\25 | 216.393 | 11 | 3 | 3.667 | |||
15\34 | 216.867 | 15 | 4 | 3.750 | |||
19\43 | 217.143 | 19 | 5 | 3.800 | |||
4\9 | 218.18 | 4 | 1 | 4.000 | |||
13\29 | 219.718 | 13 | 3 | 4.333 | |||
9\20 | 220.408 | 9 | 2 | 4.500 | |||
14\31 | 221.053 | 14 | 3 | 4.667 | |||
5\11 | 222.2 | 5 | 1 | 5.000 | Mahuric-Superpyth ends | ||
11\24 | 223.728 | 11 | 2 | 5.500 | |||
17\37 | 224.176 | 17 | 3 | 5.667 | |||
6\13 | 225.000 | 6 | 1 | 6.000 | |||
1\3 | 240.000 | 1 | 0 | → inf | Paucitonic |
See also
2L 1s (4/3-equivalent) - idealized tuning
4L 2s (7/4-equivalent) - Mixolydian Archytas temperament
4L 2s (39/22-equivalent) - Mixolydian Neogothic temperament
4L 2s (9/5-equivalent) - Mixolydian Meantone temperament
6L 3s (7/3-equivalent) - Mahuric-Archytas temperament
6L 3s (26/11-equivalent) - Mahuric-Neogothic temperament
6L 3s (12/5-equivalent) - Mahuric-Meantone temperament
8L 4s (28/9-equivalent) - Bijou Archytas temperament
8L 4s (22/7-equivalent) - Bijou Neogothic temperament
8L 4s (16/5-equivalent) - Bijou Meantone temperament
10L 5s (112/27-equivalent) - Hyperionic Archytas temperament
10L 5s (88/21-equivalent) - Hyperionic Neogothic temperament
10L 5s (30/7-equivalent) - Hyperionic Meantone temperament
12L 6s (11/2-equivalent) - Low undecimal Subsextal temperament
12L 6s (28/5-equivalent) - Low septimal Subsextal temperament
12L 6s (80/7-equivalent) - High septimal Subsextal temperament
12L 6s (64/11-equivalent) - High undecimal Subsextal temperament