1553edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
Cleanup
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|1553}}
{{EDO intro|1553}}
== Theory ==
== Theory ==
1553edo is only [[consistent]] to the 5-odd-limit and harmonic 3 is about halfway between its steps. It has a reasonable approximation of the 2.9.5.7.13 [[subgroup]], where it notably tempers out [[4096/4095]] and 140625/140608.  
1553edo is only [[consistent]] to the [[5-odd-limit]] and [[3/1|harmonic 3]] is about halfway between its steps. It has a reasonable approximation of the 2.9.5.7.13 [[subgroup]], where it notably tempers out [[4096/4095]] and 140625/140608.  


=== Odd harmonics ===
=== Odd harmonics ===
Line 10: Line 11:
1553edo is the 245th [[prime edo]]. 3106edo, which doubles it, provides a good correction to the harmonic 3.
1553edo is the 245th [[prime edo]]. 3106edo, which doubles it, provides a good correction to the harmonic 3.


==Regular temperament properties==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
Line 23: Line 24:
| 2.9
| 2.9
| {{monzo| 4923 -1553 }}
| {{monzo| 4923 -1553 }}
| {{val| 1553 4923 }}
| {{mapping| 1553 4923 }}
| -0.0130
| -0.0130
| 0.0130
| 0.0130
Line 30: Line 31:
| 2.9.5
| 2.9.5
| {{monzo| 93 -33 5 }}, {{monzo| -36 -26 51 }}
| {{monzo| 93 -33 5 }}, {{monzo| -36 -26 51 }}
| {{val| 1553 4923 3606 }}
| {{mapping| 1553 4923 3606 }}
| -0.0137
| -0.0137
| 0.0106
| 0.0106
Line 37: Line 38:
| 2.9.5.7
| 2.9.5.7
| {{monzo| -5 5 5 -8 }}, {{monzo| 2 -10 14 -1 }}, {{monzo| 37 1 -4 -11 }}
| {{monzo| -5 5 5 -8 }}, {{monzo| 2 -10 14 -1 }}, {{monzo| 37 1 -4 -11 }}
| {{val| 1553 4923 3606 4360 }}
| {{mapping| 1553 4923 3606 4360 }}
| -0.0225
| -0.0225
| 0.0178
| 0.0178
Line 44: Line 45:
| 2.9.5.7.13
| 2.9.5.7.13
| 4096/4095, 140625/140608, 28829034/28824005, {{monzo| 4 10 -9 0 -4 }}
| 4096/4095, 140625/140608, 28829034/28824005, {{monzo| 4 10 -9 0 -4 }}
| {{val| 1553 4923 3606 4360 5372 }}
| {{mapping| 1553 4923 3606 4360 5372 }}
| -0.0271
| -0.0271
| 0.0184
| 0.0184
| 2.38
| 2.38
|}
|}
==Music==
 
* [https://www.youtube.com/watch?v=gdxwRJSLyvw Stumbling Over Mystery] by Francium
== Music ==
; [[User:Francium|Francium]]
* [https://www.youtube.com/watch?v=gdxwRJSLyvw ''Stumbling Over Mystery''] (2023)

Revision as of 07:24, 17 October 2023

← 1552edo 1553edo 1554edo →
Prime factorization 1553 (prime)
Step size 0.772698 ¢ 
Fifth 908\1553 (701.61 ¢)
Semitones (A1:m2) 144:119 (111.3 ¢ : 91.95 ¢)
Dual sharp fifth 909\1553 (702.382 ¢)
Dual flat fifth 908\1553 (701.61 ¢)
Dual major 2nd 264\1553 (203.992 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

1553edo is only consistent to the 5-odd-limit and harmonic 3 is about halfway between its steps. It has a reasonable approximation of the 2.9.5.7.13 subgroup, where it notably tempers out 4096/4095 and 140625/140608.

Odd harmonics

Approximation of odd harmonics in 1553edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.345 +0.035 +0.137 +0.082 -0.384 +0.168 -0.310 +0.132 -0.024 -0.208 -0.071
Relative (%) -44.7 +4.6 +17.8 +10.6 -49.7 +21.7 -40.1 +17.0 -3.1 -26.9 -9.2
Steps
(reduced)
2461
(908)
3606
(500)
4360
(1254)
4923
(264)
5372
(713)
5747
(1088)
6067
(1408)
6348
(136)
6597
(385)
6821
(609)
7025
(813)

Subsets and supersets

1553edo is the 245th prime edo. 3106edo, which doubles it, provides a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [4923 -1553 [1553 4923]] -0.0130 0.0130 1.68
2.9.5 [93 -33 5, [-36 -26 51 [1553 4923 3606]] -0.0137 0.0106 1.38
2.9.5.7 [-5 5 5 -8, [2 -10 14 -1, [37 1 -4 -11 [1553 4923 3606 4360]] -0.0225 0.0178 2.31
2.9.5.7.13 4096/4095, 140625/140608, 28829034/28824005, [4 10 -9 0 -4 [1553 4923 3606 4360 5372]] -0.0271 0.0184 2.38

Music

Francium