443edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
mNo edit summary
BudjarnLambeth (talk | contribs)
mNo edit summary
Line 1: Line 1:
{{novelty}}{{stub}}{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|443}}
{{EDO intro|443}}
== Theory ==
== Theory ==

Revision as of 06:34, 9 July 2023

← 442edo 443edo 444edo →
Prime factorization 443 (prime)
Step size 2.7088 ¢ 
Fifth 259\443 (701.58 ¢)
Semitones (A1:m2) 41:34 (111.1 ¢ : 92.1 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

443et tempers out 67108864/66976875, 6144/6125 and 32805/32768 in the 7-limit; 806736/805255, 35156250/35153041, 759375/758912, 131072/130977, 540/539, 184549376/184528125, 5632/5625, 8019/8000, 160083/160000, 391314/390625, 202397184/201768035, 3294225/3294172 and 20614528/20588575 in the 11-limit.

Prime harmonics

Approximation of prime harmonics in 443edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.37 +1.05 +0.93 +1.28 -0.80 +0.69 +0.46 +0.17 -0.23 +0.79
Relative (%) +0.0 -13.8 +38.6 +34.2 +47.2 -29.5 +25.4 +16.8 +6.2 -8.6 +29.1
Steps
(reduced)
443
(0)
702
(259)
1029
(143)
1244
(358)
1533
(204)
1639
(310)
1811
(39)
1882
(110)
2004
(232)
2152
(380)
2195
(423)

Subsets and supersets

443edo is the 86th prime edo. 886edo, which doubles it, gives a good correction until the 11-limit.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-702 443 443 702] 0.1183 0.1183 4.37

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 92\443 249.21 81/70 Hemischis (7-limit)

Music