User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions
No edit summary |
|||
Line 7: | Line 7: | ||
[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]]. | [[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]]. | ||
==Notation== | ==Notation== | ||
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s] | There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth notation and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used. | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Cents<ref name=":05">Fractions repeating more than 4 digits written as continued fractions</ref> | |+Cents<ref name=":05">Fractions repeating more than 4 digits written as continued fractions</ref> | ||
Line 324: | Line 324: | ||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
! colspan=" | ! colspan="4" |Notation | ||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
Line 336: | Line 336: | ||
!Bijou | !Bijou | ||
!Hyperionic | !Hyperionic | ||
!Subsextal | |||
!~11ed4/3 | !~11ed4/3 | ||
!~8ed4/3 | !~8ed4/3 | ||
Line 345: | Line 346: | ||
|- | |- | ||
|G# | |G# | ||
|0#, | |0#, E# | ||
|1# | |1# | ||
|0# | |||
|1\11 | |1\11 | ||
46; 6.5 | 46; 6.5 | ||
Line 366: | Line 368: | ||
|1b, 1d | |1b, 1d | ||
|2f | |2f | ||
|1f | |||
|3\11 | |3\11 | ||
138; 3.25 | 138; 3.25 | ||
Line 382: | Line 385: | ||
|'''1''' | |'''1''' | ||
|'''2''' | |'''2''' | ||
|'''1''' | |||
|'''4\11''' | |'''4\11''' | ||
'''184; 1.625''' | '''184; 1.625''' | ||
Line 400: | Line 404: | ||
|1# | |1# | ||
|2# | |2# | ||
|1# | |||
|5\11 | |5\11 | ||
230; 1.3 | 230; 1.3 | ||
Line 418: | Line 423: | ||
|'''2b, 2d''' | |'''2b, 2d''' | ||
|'''3f''' | |'''3f''' | ||
|2f | |||
|'''7\11''' | |'''7\11''' | ||
'''323; 13''' | '''323; 13''' | ||
Line 434: | Line 440: | ||
|2 | |2 | ||
|3 | |3 | ||
|'''2''' | |||
|8\11 | |8\11 | ||
369; 4.{{Overline|3}} | 369; 4.{{Overline|3}} | ||
Line 452: | Line 459: | ||
|2# | |2# | ||
|3# | |3# | ||
|2# | |||
|9\11 | |9\11 | ||
415; 2.6 | 415; 2.6 | ||
Line 470: | Line 478: | ||
|3b, 3d | |3b, 3d | ||
|4f | |4f | ||
|'''3f''' | |||
|10\11 | |10\11 | ||
461; 1, 1.1{{Overline|6}} | 461; 1, 1.1{{Overline|6}} | ||
Line 486: | Line 495: | ||
!3 | !3 | ||
!4 | !4 | ||
!3 | |||
!'''11\11''' | !'''11\11''' | ||
'''507; 1.{{Overline|4}}''' | '''507; 1.{{Overline|4}}''' | ||
Line 504: | Line 514: | ||
|3# | |3# | ||
|4# | |4# | ||
|3# | |||
|12\11 | |12\11 | ||
553; 1.{{Overline|18}} | 553; 1.{{Overline|18}} | ||
Line 522: | Line 533: | ||
|4b, 4d | |4b, 4d | ||
|5f | |5f | ||
|4f | |||
|14\11 | |14\11 | ||
646; 6.5 | 646; 6.5 | ||
Line 538: | Line 550: | ||
|'''4''' | |'''4''' | ||
|'''5''' | |'''5''' | ||
|'''4''' | |||
|'''15\11''' | |'''15\11''' | ||
'''692; 3.25''' | '''692; 3.25''' | ||
Line 556: | Line 569: | ||
|4# | |4# | ||
|5# | |5# | ||
|4# | |||
|16\11 | |16\11 | ||
738; 2.1{{Overline|6}} | 738; 2.1{{Overline|6}} | ||
Line 574: | Line 588: | ||
|'''5b, 5d''' | |'''5b, 5d''' | ||
|'''6f''' | |'''6f''' | ||
|5f | |||
|'''18\11''' | |'''18\11''' | ||
'''830; 1.3''' | '''830; 1.3''' | ||
Line 590: | Line 605: | ||
|5 | |5 | ||
|6 | |6 | ||
|'''5''' | |||
|19\11 | |19\11 | ||
876; 1.08{{Overline|3}} | 876; 1.08{{Overline|3}} | ||
Line 608: | Line 624: | ||
|5# | |5# | ||
|6# | |6# | ||
|5# | |||
|20\11 | |20\11 | ||
923: 13 | 923: 13 | ||
Line 626: | Line 643: | ||
|6b, 6d | |6b, 6d | ||
|7f | |7f | ||
|'''6f''' | |||
|21\11 | |21\11 | ||
969; 4.{{Overline|3}} | 969; 4.{{Overline|3}} | ||
Line 642: | Line 660: | ||
!6 | !6 | ||
!7 | !7 | ||
!6 | |||
!22\11 | !22\11 | ||
1015; 2.6 | 1015; 2.6 | ||
Line 660: | Line 679: | ||
|6# | |6# | ||
|7# | |7# | ||
|6# | |||
|23\11 | |23\11 | ||
1061; 1, 1.1{{Overline|6}} | 1061; 1, 1.1{{Overline|6}} | ||
Line 678: | Line 698: | ||
|7b, 7d | |7b, 7d | ||
|8f | |8f | ||
|7f | |||
|25\11 | |25\11 | ||
1153; 1.{{Overline|18}} | 1153; 1.{{Overline|18}} | ||
Line 694: | Line 715: | ||
|'''7''' | |'''7''' | ||
|'''8''' | |'''8''' | ||
|7 | |||
|'''26\11''' | |'''26\11''' | ||
'''1200''' | '''1200''' | ||
Line 712: | Line 734: | ||
|7# | |7# | ||
|8# | |8# | ||
|7# | |||
|27\11 | |27\11 | ||
1246; 6,5 | 1246; 6,5 | ||
Line 728: | Line 751: | ||
|- | |- | ||
|'''Ff''' | |'''Ff''' | ||
|'''8b, | |'''8b, Gd''' | ||
|'''9f''' | |'''9f''' | ||
|8f | |||
|'''29\11''' | |'''29\11''' | ||
'''1338; 3.25''' | '''1338; 3.25''' | ||
Line 744: | Line 768: | ||
|- | |- | ||
|F | |F | ||
|8, | |8, G | ||
|9 | |9 | ||
|'''8''' | |||
|30\11 | |30\11 | ||
1384; 1.625 | 1384; 1.625 | ||
Line 762: | Line 787: | ||
|- | |- | ||
|F# | |F# | ||
|8#, | |8#, G# | ||
|9# | |9# | ||
|8# | |||
|31\11 | |31\11 | ||
1430; 1.3 | 1430; 1.3 | ||
Line 780: | Line 806: | ||
|- | |- | ||
|Gf | |Gf | ||
|9b, | |9b, Ad | ||
|Af | |Af | ||
|9f | |||
|32\11 | |32\11 | ||
1476; 1.08{{Overline|3}} | 1476; 1.08{{Overline|3}} | ||
Line 796: | Line 823: | ||
|- | |- | ||
!G | !G | ||
!'''9, | !'''9, A''' | ||
!A | !A | ||
!9 | |||
!33\11 | !33\11 | ||
1523; 13 | 1523; 13 | ||
Line 814: | Line 842: | ||
|- | |- | ||
|G# | |G# | ||
|9#, | |9#, A# | ||
|A# | |A# | ||
|9# | |||
|34\11 | |34\11 | ||
1569; 4.{{Overline|3}} | 1569; 4.{{Overline|3}} | ||
Line 832: | Line 861: | ||
|- | |- | ||
|Jf, Af | |Jf, Af | ||
|Xb, | |Xb, Bd | ||
|Bf | |Bf | ||
|Xb | |||
|36\11 | |36\11 | ||
1661; 1, 1.1{{Overline|6}} | 1661; 1, 1.1{{Overline|6}} | ||
Line 848: | Line 878: | ||
|- | |- | ||
|'''J, A''' | |'''J, A''' | ||
|'''X, | |'''X, B''' | ||
|'''B''' | |'''B''' | ||
|'''X''' | |||
|'''37\11''' | |'''37\11''' | ||
'''1707; 1.{{Overline|4}}''' | '''1707; 1.{{Overline|4}}''' | ||
Line 867: | Line 898: | ||
|- | |- | ||
|J#, A# | |J#, A# | ||
|X#, | |X#, B# | ||
|B# | |B# | ||
|X# | |||
|38\11 | |38\11 | ||
1753; 1.{{Overline|18}} | 1753; 1.{{Overline|18}} | ||
Line 885: | Line 917: | ||
|- | |- | ||
|'''Af, Bf''' | |'''Af, Bf''' | ||
|'''Eb, | |'''Eb, Dd''' | ||
|'''Cf''' | |'''Cf''' | ||
|'''ɛf''' | |||
|'''40\11''' | |'''40\11''' | ||
'''1846; 6.5''' | '''1846; 6.5''' | ||
Line 902: | Line 935: | ||
|- | |- | ||
|A, B | |A, B | ||
|E, | |E, D | ||
|C | |C | ||
|ɛ | |||
|41\11 | |41\11 | ||
1892; 3.25 | 1892; 3.25 | ||
Line 920: | Line 954: | ||
|- | |- | ||
|A#, B# | |A#, B# | ||
|E#, | |E#, D# | ||
|C# | |C# | ||
|ɛ# | |||
|42\11 | |42\11 | ||
1938; 2.1{{Overline|6}} | 1938; 2.1{{Overline|6}} | ||
Line 938: | Line 973: | ||
|- | |- | ||
|Bb, Cf | |Bb, Cf | ||
|0b, | |0b, Ed | ||
|Df | |Df | ||
|43\ | |Af | ||
|43\11 | |||
1984; 1.625 | 1984; 1.625 | ||
|50\13 | |50\13 | ||
Line 954: | Line 990: | ||
|- | |- | ||
!B, C | !B, C | ||
!0, | !0, E | ||
!D | !D | ||
!A | |||
!44\11 | !44\11 | ||
2030; 1.3 | 2030; 1.3 | ||
Line 973: | Line 1,010: | ||
|- | |- | ||
|B#, C# | |B#, C# | ||
|0#, | |0#, E# | ||
|D# | |D# | ||
|A# | |||
|45\11 | |45\11 | ||
2076; 1.08{{Overline|3}} | 2076; 1.08{{Overline|3}} | ||
Line 993: | Line 1,031: | ||
|1b, 1d | |1b, 1d | ||
|Ef | |Ef | ||
|Bf | |||
|47\11 | |47\11 | ||
2169; 4.{{Overline|3}} | 2169; 4.{{Overline|3}} | ||
Line 1,009: | Line 1,048: | ||
|'''1''' | |'''1''' | ||
|'''E''' | |'''E''' | ||
|'''B''' | |||
|'''48\11''' | |'''48\11''' | ||
'''2215; 2.6''' | '''2215; 2.6''' | ||
Line 1,027: | Line 1,067: | ||
|1# | |1# | ||
|E# | |E# | ||
|B# | |||
|49\11 | |49\11 | ||
2261; 1, 1.1{{Overline|6}} | 2261; 1, 1.1{{Overline|6}} | ||
Line 1,045: | Line 1,086: | ||
|'''2b, 2d''' | |'''2b, 2d''' | ||
|'''Ff''' | |'''Ff''' | ||
|'''Cf''' | |||
|'''51\11''' | |'''51\11''' | ||
'''2353; 1.{{Overline|18}}''' | '''2353; 1.{{Overline|18}}''' | ||
Line 1,061: | Line 1,103: | ||
|2 | |2 | ||
|F | |F | ||
|C | |||
|52\11 | |52\11 | ||
2400 | 2400 | ||
Line 1,079: | Line 1,122: | ||
|2# | |2# | ||
|F# | |F# | ||
|C# | |||
|53\11 | |53\11 | ||
2446; 6.5 | 2446; 6.5 | ||
Line 1,097: | Line 1,141: | ||
|3b, 3d | |3b, 3d | ||
|1f | |1f | ||
|Df | |||
|54\11 | |54\11 | ||
2492; 3.25 | 2492; 3.25 | ||
Line 1,113: | Line 1,158: | ||
!3 | !3 | ||
!1 | !1 | ||
!D | |||
!55\11 | !55\11 | ||
2538; 2.1{{Overline|6}} | 2538; 2.1{{Overline|6}} | ||
Line 1,127: | Line 1,173: | ||
!45\9 | !45\9 | ||
2454.{{Overline|54}} | 2454.{{Overline|54}} | ||
|- | |||
|D#, S# | |||
|3# | |||
|1# | |||
|D# | |||
|56\11 | |||
2584; 1.625 | |||
|41\8 | |||
2589; 2.1̄ | |||
| | |||
| rowspan="2" |26\5 | |||
2600 | |||
|63\12 | |||
2606; 1, 8.{{Overline|6}} | |||
|37\7 | |||
2611; 1, 3.25 | |||
|48\9 | |||
2618.{{Overline|18}} | |||
|- | |||
|Ef | |||
|4b, 4d | |||
|2f | |||
|Ef | |||
|58\11 | |||
2676; 1.08{{Overline|3}} | |||
|42\8 | |||
2652; 1.58{{Overline|3}} | |||
| | |||
|62\12 | |||
2565; 1.9{{Overline|3}} | |||
|36\7 | |||
2541; 5.{{Overline|6}} | |||
|46\9 | |||
2509.{{Overline|09}} | |||
|- | |||
|'''E''' | |||
|'''4''' | |||
|'''2''' | |||
|'''E''' | |||
|'''59\11''' | |||
'''2723; 13''' | |||
|'''43\8''' | |||
'''2715; 1.2{{Overline|6}}''' | |||
| | |||
|'''27\5''' | |||
'''2700''' | |||
|'''65\12''' | |||
'''2689; 1, 1.9''' | |||
|'''38\7''' | |||
'''2682; 2.8{{Overline|3}}''' | |||
|'''49\9''' | |||
'''2672.{{Overline|72}}''' | |||
|- | |||
|E# | |||
|4# | |||
|2# | |||
|E# | |||
|60\11 | |||
2769; 4.{{Overline|3}} | |||
|44\8 | |||
2778; 1.05̄ | |||
| | |||
| rowspan="2" |'''28\5''' | |||
'''2800''' | |||
|68\12 | |||
2813; 1, 3.8{{Overline|3}} | |||
|40\7 | |||
2823; 1.{{Overline|8}} | |||
|52\9 | |||
2836.{{Overline|36}} | |||
|- | |||
|'''Ff''' | |||
|'''5b, 5d''' | |||
|'''3f''' | |||
|'''Ff''' | |||
|'''62\11''' | |||
'''2861; 1, 1.1{{Overline|6}}''' | |||
|'''45\8''' | |||
'''2842; 9.5''' | |||
| | |||
|'''67\12''' | |||
'''2772; 29''' | |||
|'''39\7''' | |||
'''2752; 1.0625''' | |||
|'''50\9''' | |||
'''2727.{{Overline|27}}''' | |||
|- | |||
|F | |||
|5 | |||
|3 | |||
|F | |||
|63\11 | |||
2907; 1.{{Overline|4}} | |||
|46\8 | |||
2905; 3.8 | |||
| | |||
|29\5 | |||
2900 | |||
|70\12 | |||
2896; 1.8125 | |||
|41\7 | |||
2894; 8.5 | |||
|53\9 | |||
2890.{{Overline|90}} | |||
|- | |||
|F# | |||
|5# | |||
|3# | |||
|F# | |||
|64\11 | |||
2953; 1.{{Overline|18}} | |||
| rowspan="2" |47\8 | |||
2968; 2.375 | |||
| | |||
|30\5 | |||
3000 | |||
|73\12 | |||
3020; 1.45 | |||
|43\7 | |||
3035; 3,4 | |||
|55\9 | |||
3000 | |||
|- | |||
|Gf | |||
|6b, 6d | |||
|4f | |||
|0f | |||
|65\11 | |||
3000 | |||
| | |||
|29\5 | |||
2900 | |||
|69\29 | |||
2855; 5.8 | |||
|40\7 | |||
2823; 1.{{Overline|8}} | |||
|52\9 | |||
2836.{{Overline|36}} | |||
|- | |||
!G | |||
!6 | |||
!4 | |||
!0 | |||
!66\11 | |||
3046; 6.5 | |||
!48\8 | |||
30'''31; 1.{{Overline|72}}''' | |||
! | |||
!30\5 | |||
3000 | |||
!72\12 | |||
29'''79; 3.{{Overline|2}}''' | |||
!42\7 | |||
2964; 1, 3.25 | |||
!54\9 | |||
2945.{{Overline|45}} | |||
|} | |} | ||
== | ==Intervals== | ||
{| class="wikitable" | {| class="wikitable" | ||
!Generators | !Generators |
Revision as of 05:31, 4 July 2023
2L 1s<perfect fourth>, is a perfect fourth-repeating MOS scale. The notation "<perfect fourth>" means the period of the MOS is a perfect fourth, disambiguating it from octave-repeating 2L 1s.
The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).
In the fourth-repeating version of the diatonic scale, each tone has a 4/3 perfect fourth above it. The scale has one major chord and two minor chords.
Basic diatonic is in 5ed4/3, which is a very good fourth-based equal tuning similar to 12edo.
Notation
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the genchain harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth notation and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Fourth | Seventh | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
Do#, Sol# | Sol# | 1\11
46; 6.5 |
1\8
63; 6.3 |
2\13
77; 2, 2.6 |
1\5
100 |
3\12
124; 7.25 |
2\7
141; 5.6 |
3\9
163.63 |
Reb, Lab | Lab | 3\11
138; 3.25 |
2\8
126; 3.16 |
3\13
116; 7.75 |
2\12
82; 1.318 |
1\7
70; 1.7 |
1\9
54.54 | |
Re, La | La | 4\11
184; 1.625 |
3\8
189; 2.1 |
5\13
193; 1, 1, 4.6 |
2\5
200 |
5\12
206; 1, 8.6 |
3\7
211; 1, 3.25 |
4\9
218.18 |
Re#, La# | La# | 5\11
230; 1.3 |
4\8
252; 1.583 |
7\13
270; 1.03 |
3\5
300 |
8\12
331; 29 |
5\7
352; 1.0625 |
7\9
381.81 |
Mib, Sib | Sib | 7\11
323; 13 |
5\8
315; 1.26 |
8\13
309; 1, 2.1 |
7\12
289; 1, 1.9 |
4\7
282; 2.83 |
5\9
272.72 | |
Mi, Si | Si | 8\11
369; 4.3 |
6\8
378; 1.05 |
10\13
387; 10.3 |
4\5
400 |
10\12
413; 1, 3.83 |
6\7
423; 1.8 |
8\9
436.36 |
Mi#, Si# | Si# | 9\11
415; 2.6 |
7\8
442; 9.5 |
12\13
464; 1.9375 |
5\5
500 |
13\12
537; 14.5 |
8\7
564; 1.416 |
11\9
600 |
Dob, Solb | Dob | 10\11
461; 1, 1.16 |
11\13
425; 1.24 |
4\5
400 |
9\12
372; 2.416 |
5\7
352; 1.0625 |
6\9
327.27 | |
Do, Sol | Do | 11\11
507; 1.4 |
8\8
505; 3.8 |
13\13
503; 4, 2.3 |
5\5
500 |
12\12
496; 1.8125 |
7\7
494; 8.5 |
9\9
490.90 |
Do#, Sol# | Do# | 12\11
553; 1.18 |
9\8
568; 2.375 |
15\13
580; 1.55 |
6\5
600 |
15\12
620; 1.45 |
9\7
635; 3.4 |
12\9
654.54 |
Reb, Lab | Reb | 14\11
646; 6.5 |
10\8
631; 1.72 |
16\13
619; 2.81 |
14\12
579; 3.2 |
8\7
564; 1.416 |
10\9
545.45 | |
Re, La | Re | 15\11
692; 3.25 |
11\8
694; 1, 2.8 |
18\13
696; 1.2916 |
7\5
700 |
17\12
703; 2, 2.16 |
10\7
705; 1.13 |
13\9
709.09 |
Re#, La# | Re# | 16\11
738; 2.16 |
12\8
757; 1, 8.5 |
20\13
774; 5.16 |
8\5
800 |
20\12
827; 1, 1.416 |
12\7
847; 17 |
16\9
872.72 |
Mib, Sib | Mib | 18\11
830; 1.3 |
13\8
821; 19 |
21\13
812; 1, 9.3 |
19\12
786; 4.83 |
11\7
776; 2.125 |
14\9
763.63 | |
Mi, Si | Mi | 19\11
876; 1.083 |
14\8
884; 4.75 |
23\13
890; 3.1 |
9\5
900 |
22\12
910; 2.9 |
13\7
917; 1.54 |
17\9
927.27 |
Mi#, Si# | Mi# | 20\11
923: 13 |
15\8
947; 2, 1.4 |
25\13
967; 1, 2.875 |
10\5
1000 |
25\12
1034; 2, 14 |
15\7
1058; 1, 4.6 |
20\9
1090.90 |
Dob, Solb | Solb | 21\11
969; 4.3 |
24\13
929; 31 |
9\5
900 |
21\12
868; 1, 28 |
11\7
776; 2.125 |
15\9
818.18 | |
Do, Sol | Sol | 22\11
1015; 2.6 |
16\8
1010; 1.9 |
26\13
1006; 2, 4.6 |
10\5
1000 |
24\12
993; 9.6 |
14\7
988; 4.25 |
18\9
981.81 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |||
---|---|---|---|---|---|---|---|---|---|---|
Mahur | Bijou | Hyperionic | Subsextal | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
G# | 0#, E# | 1# | 0# | 1\11
46; 6.5 |
1\8
63; 6.3 |
2\13
77; 2, 2.6 |
1\5
100 |
3\12
124; 7.25 |
2\7
141; 5.6 |
3\9
163.63 |
Jf, Af | 1b, 1d | 2f | 1f | 3\11
138; 3.25 |
2\8
126; 3.16 |
3\13
116; 7.75 |
2\12
82; 1.318 |
1\7
70; 1.7 |
1\9
54.54 | |
J, A | 1 | 2 | 1 | 4\11
184; 1.625 |
3\8
189; 2.1 |
5\13
193; 1, 1, 4.6 |
2\5
200 |
5\12
206; 1, 8.6 |
3\7
211; 1, 3.25 |
4\9
218.18 |
J#, A# | 1# | 2# | 1# | 5\11
230; 1.3 |
4\8
252; 1.583 |
7\13
270; 1.03 |
3\5
300 |
8\12
331; 29 |
5\7
352; 1.0625 |
7\9
381.81 |
Af, Bf | 2b, 2d | 3f | 2f | 7\11
323; 13 |
5\8
315; 1.26 |
8\13
309; 1, 2.1 |
7\12
289; 1, 1.9 |
4\7
282; 2.83 |
5\9
272.72 | |
A, B | 2 | 3 | 2 | 8\11
369; 4.3 |
6\8
378; 1.05 |
10\13
387; 10.3 |
4\5
400 |
10\12
413; 1, 3.83 |
6\7
423; 1.8 |
8\9
436.36 |
A#, B# | 2# | 3# | 2# | 9\11
415; 2.6 |
7\8
442; 9.5 |
12\13
464; 1.9375 |
5\5
500 |
13\12
537; 14.5 |
8\7
564; 1.416 |
11\9
600 |
Bb, Cf | 3b, 3d | 4f | 3f | 10\11
461; 1, 1.16 |
11\13
425; 1.24 |
4\5
400 |
9\12
372; 2.416 |
5\7
352; 1.0625 |
6\9
327.27 | |
B, C | 3 | 4 | 3 | 11\11
507; 1.4 |
8\8
505; 3.8 |
13\13
503; 4, 2.3 |
5\5
500 |
12\12
496; 1.8125 |
7\7
494; 8.5 |
9\9
490.90 |
B#, C# | 3# | 4# | 3# | 12\11
553; 1.18 |
9\8
568; 2.375 |
15\13
580; 1.55 |
6\5
600 |
15\12
620; 1.45 |
9\7
635; 3.4 |
12\9
654.54 |
Cf, Qf | 4b, 4d | 5f | 4f | 14\11
646; 6.5 |
10\8
631; 1.72 |
16\13
619; 2.81 |
14\12
579; 3.2 |
8\7
564; 1.416 |
10\9
545.45 | |
C, Q | 4 | 5 | 4 | 15\11
692; 3.25 |
11\8
694; 1, 2.8 |
18\13
696; 1.2916 |
7\5
700 |
17\12
703; 2, 2.16 |
10\7
705; 1.13 |
13\9
709.09 |
C#, Q# | 4# | 5# | 4# | 16\11
738; 2.16 |
12\8
757; 1, 8.5 |
20\13
774; 5.16 |
8\5
800 |
20\12
827; 1, 1.416 |
12\7
847; 17 |
16\9
872.72 |
Qf, Df | 5b, 5d | 6f | 5f | 18\11
830; 1.3 |
13\8
821; 19 |
21\13
812; 1, 9.3 |
19\12
786; 4.83 |
11\7
776; 2.125 |
14\9
763.63 | |
Q, D | 5 | 6 | 5 | 19\11
876; 1.083 |
14\8
884; 4.75 |
23\13
890; 3.1 |
9\5
900 |
22\12
910; 2.9 |
13\7
917; 1.54 |
17\9
927.27 |
Q#, D# | 5# | 6# | 5# | 20\11
923: 13 |
15\8
947; 2, 1.4 |
25\13
967; 1, 2.875 |
10\5
1000 |
25\12
1034; 2, 14 |
15\7
1058; 1, 4.6 |
20\9
1090.90 |
Df, Sf | 6b, 6d | 7f | 6f | 21\11
969; 4.3 |
24\13
929; 31 |
9\5
900 |
21\12
868; 1, 28 |
11\7
776; 2.125 |
15\9
818.18 | |
D, S | 6 | 7 | 6 | 22\11
1015; 2.6 |
16\8
1010; 1.9 |
26\13
1006; 2, 4.6 |
10\5
1000 |
24\12
993; 9.6 |
14\7
988; 4.25 |
18\9
981.81 |
D#, S# | 6# | 7# | 6# | 23\11
1061; 1, 1.16 |
17\8
1073; 1, 2.16 |
28\13
1083; 1.148 |
11\5
1100 |
27\12
1117; 4, 7 |
16\7
1129; 2, 2.3 |
24\9
1309.09 |
Ef | 7b, 7d | 8f | 7f | 25\11
1153; 1.18 |
18\8
1136; 1.1875 |
29\13
1122; 1.72 |
26\12
1075; 1.16 |
15\7
1058; 1, 4.6 |
19\9
1036.36 | |
E | 7 | 8 | 7 | 26\11
1200 |
19\8
1200 |
31\13
1200 |
12\5
1200 |
29\12
1200 |
17\7
1200 |
22\9
1200 |
E# | 7# | 8# | 7# | 27\11
1246; 6,5 |
20\8
1263; 6.3 |
33\13
1277; 2, 2.6 |
13\5
1300 |
32\12
1324; 7.25 |
19\7
1341; 5.6 |
25\9
1363.63 |
Ff | 8b, Gd | 9f | 8f | 29\11
1338; 3.25 |
21\8
1326; 3.16̄ |
34\13
1316; 7.75 |
31\12
1282; 1.318 |
18\7
1270; 1.7 |
23\9
1254.54 | |
F | 8, G | 9 | 8 | 30\11
1384; 1.625 |
22\8
1389; 2.1̄ |
36\13
1393; 1, 1, 4.6 |
14\5
1400 |
34\12
1406; 1, 8.6 |
20\7
1411; 1, 3.25 |
26\9
1418.18 |
F# | 8#, G# | 9# | 8# | 31\11
1430; 1.3 |
23\8
1452; 1.583 |
38\13
1470; 1.03 |
15\5
1500 |
37\12
1531; 29 |
22\7
1552; 1.0625 |
29\9
1581.81 |
Gf | 9b, Ad | Af | 9f | 32\11
1476; 1.083 |
37\13
1432: 3.875 |
14\5
1400 |
33\12
1365; 1.93 |
19\7
1341; 5.3 |
24\9
1309.09 | |
G | 9, A | A | 9 | 33\11
1523; 13 |
24\8
1515; 1.26 |
39\13
1509; 1, 2.1 |
15\5
1500 |
36\12
1489; 1, 1.9 |
21\7
1482; 2.83 |
27\9
1472.72 |
G# | 9#, A# | A# | 9# | 34\11
1569; 4.3 |
25\8
1578; 1.05̄ |
41\13
1587; 10.3 |
16\5
1600 |
39\12
1613; 1, 3.83 |
23\7
1623; 1.8 |
30\9
1636.36 |
Jf, Af | Xb, Bd | Bf | Xb | 36\11
1661; 1, 1.16 |
26\8
1642; 9.5 |
42\13
1625; 1.24 |
38\12
1572; 29 |
22\7
1552; 1.0625 |
28\9
1527.27 | |
J, A | X, B | B | X | 37\11
1707; 1.4 |
27\8
1705; 3.8 |
44\13
1703; 4, 2.3̄ |
17\5
1700 |
41\12
1696; 1.8125 |
24\7
1694; 8.5 |
31\9
1690.90 |
J#, A# | X#, B# | B# | X# | 38\11
1753; 1.18 |
28\8
1768; 2.375 |
46\13
1780; 1.55 |
18\5
1800 |
44\12
1820; 1.45 |
26\7
1835; 3,4 |
34\9
1854.54 |
Af, Bf | Eb, Dd | Cf | ɛf | 40\11
1846; 6.5 |
29\8
1831; 1.72 |
47\13
1819; 2.81 |
43\12
1779; 3.2 |
25\7
1764; 1, 3.25 |
32\9
1745.45 | |
A, B | E, D | C | ɛ | 41\11
1892; 3.25 |
30\8
1894; 1, 2.8 |
49\13
1896; 1.2916 |
19\5
1900 |
46\12
1903; 2, 2.16 |
27\7
1905; 1, 7.5 |
35\9
1909.09 |
A#, B# | E#, D# | C# | ɛ# | 42\11
1938; 2.16 |
31\8
1957; 1, 8.5 |
51\13
1974; 5.16 |
20\5
2000 |
49\12
2027; 1, 1.416 |
29\7
2047; 17 |
38\9
2072.72 |
Bb, Cf | 0b, Ed | Df | Af | 43\11
1984; 1.625 |
50\13
1935; 2.06 |
19\5
1900 |
45\12
1862; 14.5 |
26\7
1835; 3,4 |
33\9
1800 | |
B, C | 0, E | D | A | 44\11
2030; 1.3 |
32\8
2021; 19 |
52\13
2012; 1, 9.3 |
20\5
2000 |
48\12
1986; 4.83 |
28\7
1976; 2.125 |
36\9
1963.63 |
B#, C# | 0#, E# | D# | A# | 45\11
2076; 1.083 |
33\8
2084; 4.75 |
54\13
2090; 3.1 |
21\5
2100 |
51\12
2110; 2.9 |
30\7
2117; 1.54 |
39\9
2127.27 |
Cf, Qf | 1b, 1d | Ef | Bf | 47\11
2169; 4.3 |
34\8
2147; 2, 1.4 |
55\13
2129; 31 |
50\12
2068; 1, 28 |
29\7
2047; 17 |
37\9
2018.18 | |
C, Q | 1 | E | B | 48\11
2215; 2.6 |
35\8
2210; 1.9 |
57\13
2206; 2, 4.6 |
22\5
2200 |
53\12
2193; 9.6 |
31\7
2188; 4.25 |
40\9
2181.81 |
C#, Q# | 1# | E# | B# | 49\11
2261; 1, 1.16 |
36\8
2273; 1, 2.16 |
59\13
2083; 1.148 |
23\5
2300 |
56\12
2327; 4, 7 |
33\7
2329; 2, 2.3 |
43\9
2345.45 |
Qf, Df | 2b, 2d | Ff | Cf | 51\11
2353; 1.18 |
37\8
2336; 1.1875 |
61\13
2322; 1.72 |
55\12
2275; 1.16 |
32\7
2258; 1, 4.6 |
41\9
2236.36 | |
Q, D | 2 | F | C | 52\11
2400 |
38\8
2400 |
62\13
2400 |
24\5
2400 |
58\12
2400 |
34\7
2400 |
44\9
2400 |
Q#, D# | 2# | F# | C# | 53\11
2446; 6.5 |
39\8
2463; 6.3 |
64\13
2477; 2, 2.6 |
25\5
2500 |
61\12
2524; 7.25 |
36\7
2541; 5.6 |
47/9
2563.63 |
Df, Sf | 3b, 3d | 1f | Df | 54\11
2492; 3.25 |
63\13
2438; 1.136 |
24\5
2400 |
57\12
2358; 1.61̄ |
33\7
2329; 2, 2.3 |
42\9
2390.90 | |
D, S | 3 | 1 | D | 55\11
2538; 2.16 |
40\8
2526; 3.16 |
65\13
2516; 7.75 |
25\5
2500 |
60\12
2482; 1.318 |
35\7
2470; 1.7 |
45\9
2454.54 |
D#, S# | 3# | 1# | D# | 56\11
2584; 1.625 |
41\8
2589; 2.1̄ |
26\5
2600 |
63\12
2606; 1, 8.6 |
37\7
2611; 1, 3.25 |
48\9
2618.18 | |
Ef | 4b, 4d | 2f | Ef | 58\11
2676; 1.083 |
42\8
2652; 1.583 |
62\12
2565; 1.93 |
36\7
2541; 5.6 |
46\9
2509.09 | ||
E | 4 | 2 | E | 59\11
2723; 13 |
43\8
2715; 1.26 |
27\5
2700 |
65\12
2689; 1, 1.9 |
38\7
2682; 2.83 |
49\9
2672.72 | |
E# | 4# | 2# | E# | 60\11
2769; 4.3 |
44\8
2778; 1.05̄ |
28\5
2800 |
68\12
2813; 1, 3.83 |
40\7
2823; 1.8 |
52\9
2836.36 | |
Ff | 5b, 5d | 3f | Ff | 62\11
2861; 1, 1.16 |
45\8
2842; 9.5 |
67\12
2772; 29 |
39\7
2752; 1.0625 |
50\9
2727.27 | ||
F | 5 | 3 | F | 63\11
2907; 1.4 |
46\8
2905; 3.8 |
29\5
2900 |
70\12
2896; 1.8125 |
41\7
2894; 8.5 |
53\9
2890.90 | |
F# | 5# | 3# | F# | 64\11
2953; 1.18 |
47\8
2968; 2.375 |
30\5
3000 |
73\12
3020; 1.45 |
43\7
3035; 3,4 |
55\9
3000 | |
Gf | 6b, 6d | 4f | 0f | 65\11
3000 |
29\5
2900 |
69\29
2855; 5.8 |
40\7
2823; 1.8 |
52\9
2836.36 | ||
G | 6 | 4 | 0 | 66\11
3046; 6.5 |
48\8
3031; 1.72 |
30\5
3000 |
72\12
2979; 3.2 |
42\7
2964; 1, 3.25 |
54\9
2945.45 |
Intervals
Generators | Fourth notation | Interval category name | Generators | Notation of 4/3 inverse | Interval category name |
---|---|---|---|---|---|
The 3-note MOS has the following intervals (from some root): | |||||
0 | Do, Sol | perfect unison | 0 | Do, Sol | perfect fourth |
1 | Mib, Sib | diminished third | -1 | Re, La | perfect second |
2 | Reb, Lab | diminished second | -2 | Mi, Si | perfect third |
The chromatic 5-note MOS also has the following intervals (from some root): | |||||
3 | Dob, Solb | diminished fourth | -3 | Do#, Sol# | augmented unison (chroma) |
4 | Mibb, Sibb | doubly diminished third | -4 | Re#, La# | augmented second |
Genchain
The generator chain for this scale is as follows:
Mibb
Sibb |
Dob
Solb |
Reb
Lab |
Mib
Sib |
Do
Sol |
Re
La |
Mi
Si |
Do#
Sol# |
Re#
La# |
Mi#
Si# |
dd3 | d4 | d2 | d3 | P1 | P2 | P3 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fourth:
Mode | Scale | UDP | Interval type | |
---|---|---|---|---|
name | pattern | notation | 2nd | 3rd |
Major | LLs | 2|0 | P | P |
Minor | LsL | 1|1 | P | d |
Phrygian | LsLL | 0|2 | d | d |
Temperaments
The most basic rank-2 temperament interpretation of diatonic is Mahuric. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled root-2g-(p+g)
(p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations.
Mahuric-Meantone
Subgroup: 4/3.5/4.3/2
POL2 generator: ~9/8 = 193.6725¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 8ed4/3, 13ed4/3)
Mahuric-Superpyth
Subgroup: 4/3.9/7.3/2
POL2 generator: ~8/7 = 216.7325¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3)
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents[1] | L | s | L/s | Comments | ||
---|---|---|---|---|---|---|---|
1\3 | 171; 2.3 | 1 | 1 | 1.000 | Equalised | ||
6\17 | 180 | 6 | 5 | 1.200 | |||
11\31 | 180; 1.216 | 11 | 9 | 1.222 | |||
5\14 | 181.81 | 5 | 4 | 1.250 | |||
14\39 | 182; 1, 1.5 | 14 | 11 | 1.273 | |||
9\25 | 183; 19.6 | 9 | 7 | 1.286 | |||
4\11 | 184; 1.625 | 4 | 3 | 1.333 | |||
15\41 | 185; 1.763 | 15 | 11 | 1.364 | |||
11\30 | 185, 1, 10.83 | 11 | 8 | 1.375 | |||
7\19 | 186.6 | 7 | 5 | 1.400 | |||
10\27 | 187.5 | 10 | 7 | 1.429 | |||
13\35 | 187; 1, 19.75 | 13 | 9 | 1.444 | |||
16\43 | 188; 4.25 | 16 | 11 | 1.4545 | |||
3\8 | 189; 2.1 | 3 | 2 | 1.500 | Mahuric-Meantone starts here | ||
14\37 | 190.90 | 14 | 9 | 1.556 | |||
11\29 | 191; 3, 2.3 | 11 | 7 | 1.571 | |||
8\21 | 192 | 8 | 5 | 1.600 | |||
5\13 | 193; 1, 1, 4.6 | 5 | 3 | 1.667 | |||
12\31 | 194.594 | 12 | 7 | 1.714 | |||
7\18 | 195; 2.86 | 7 | 4 | 1.750 | |||
9\23 | 196.36 | 9 | 5 | 1.800 | |||
11\28 | 197; 67 | 11 | 6 | 1.833 | |||
13\33 | 197; 2.135 | 13 | 7 | 1.857 | |||
15\38 | 197; 1, 2, 1, 1.54 | 15 | 8 | 1.875 | |||
17\43 | 198; 17.16 | 17 | 9 | 1.889 | |||
19\48 | 198: 3, 1, 28 | 19 | 10 | 1.900 | |||
21\53 | 198; 2.3518 | 21 | 11 | 1.909 | |||
23\58 | 198; 1, 3, 1.7 | 23 | 12 | 1.917 | |||
25\63 | 198; 1, 2, 12.25 | 25 | 13 | 1.923 | |||
27\68 | 198; 1, 3.405 | 27 | 14 | 1.929 | |||
29\73 | 198; 1, 1.16 | 29 | 15 | 1.933 | |||
31\78 | 198; 1, 12, 2.8 | 31 | 16 | 1.9375 | |||
33\83 | 198; 1.005 | 33 | 17 | 1.941 | |||
35\88 | 199; 19.18 | 35 | 18 | 1.944 | |||
2\5 | 200 | 2 | 1 | 2.000 | Mahuric-Meantone ends, Mahuric-Pythagorean begins | ||
17\42 | 201.9801 | 17 | 8 | 2.125 | |||
15\37 | 202; 4.045 | 15 | 7 | 2.143 | |||
13\32 | 202; 1, 1, 2.06 | 13 | 6 | 2.167 | |||
11\27 | 203; 13 | 11 | 5 | 2.200 | |||
9\22 | 203; 1, 3.416 | 9 | 4 | 2.250 | |||
7\17 | 204; 1. 7.2 | 7 | 3 | 2.333 | |||
12\29 | 205; 1.4 | 12 | 5 | 2.400 | |||
5\12 | 206; 1, 8.6 | 5 | 2 | 2.500 | Mahuric-Neogothic heartland is from here… | ||
18\43 | 207; 1.4 | 18 | 7 | 2.571 | |||
13\31 | 208 | 13 | 5 | 2.600 | |||
8\19 | 208; 1.4375 | 8 | 3 | 2.667 | …to here | ||
11\26 | 209; 1.90 | 11 | 4 | 2.750 | |||
14\33 | 210 | 14 | 5 | 2.800 | |||
3\7 | 211; 1, 3.25 | 3 | 1 | 3.000 | Mahuric-Pythagorean ends, Mahuric-Superpyth begins | ||
22\51 | 212; 1, 9.3 | 22 | 7 | 3.143 | |||
19\44 | 213; 11.8 | 19 | 6 | 3.167 | |||
16\37 | 213.3̄ | 16 | 5 | 3.200 | |||
13\30 | 213; 1, 2.318 | 13 | 4 | 3.250 | |||
10\23 | 214; 3.5 | 10 | 3 | 3.333 | |||
7\16 | 215; 2.6 | 7 | 2 | 3.500 | |||
11\25 | 216; 2.5416 | 11 | 3 | 3.667 | |||
15\34 | 216; 1.1527 | 15 | 4 | 3.750 | |||
19\43 | 217; 7 | 19 | 5 | 3.800 | |||
4\9 | 218.18 | 4 | 1 | 4.000 | |||
13\29 | 219; 1, 2.55 | 13 | 3 | 4.333 | |||
9\20 | 220; 2.45 | 9 | 2 | 4.500 | |||
14\31 | 221; 19 | 14 | 3 | 4.667 | |||
5\11 | 222.2 | 5 | 1 | 5.000 | Mahuric-Superpyth ends | ||
11\24 | 223; 1, 2.6875 | 11 | 2 | 5.500 | |||
17\37 | 224; 5.72 | 17 | 3 | 5.667 | |||
6\13 | 225 | 6 | 1 | 6.000 | |||
1\3 | 240 | 1 | 0 | → inf | Paucitonic |
See also
2L 1s (4/3-equivalent) - idealized tuning
4L 2s (7/4-equivalent) - Mixolydian Archytas temperament
4L 2s (39/22-equivalent) - Mixolydian Neogothic temperament
4L 2s (9/5-equivalent) - Mixolydian Meantone temperament
6L 3s (7/3-equivalent) - Mahuric-Archytas temperament
6L 3s (26/11-equivalent) - Mahuric-Neogothic temperament
6L 3s (12/5-equivalent) - Mahuric-Meantone temperament
8L 4s (28/9-equivalent) - Bijou Archytas temperament
8L 4s (22/7-equivalent) - Bijou Neogothic temperament
8L 4s (16/5-equivalent) - Bijou Meantone temperament
10L 5s (112/27-equivalent) - Hyperionic Archytas temperament
10L 5s (88/21-equivalent) - Hyperionic Neogothic temperament
10L 5s (30/7-equivalent) - Hyperionic Meantone temperament