User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions
No edit summary |
|||
Line 10: | Line 10: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Cents<ref name=":05">Fractions repeating more than 4 digits written as continued fractions</ref> | |+Cents<ref name=":05">Fractions repeating more than 4 digits written as continued fractions</ref> | ||
! colspan=" | ! colspan="2" |Notation | ||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
Line 18: | Line 18: | ||
!Hard | !Hard | ||
!Superhard | !Superhard | ||
|- | |- | ||
!Fourth | !Fourth | ||
!Seventh | !Seventh | ||
!~11ed4/3 | |||
!~8ed4/3 | |||
!~13ed4/3 | |||
!~5ed4/3 | |||
!~12ed4/3 | |||
!~7ed4\3 | |||
!~9ed4/3 | |||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|Sol# | |Sol# | ||
|1\11 | |1\11 | ||
46; 6.5 | 46; 6.5 | ||
Line 56: | Line 48: | ||
|Reb, Lab | |Reb, Lab | ||
|Lab | |Lab | ||
|3\11 | |3\11 | ||
138; 3.25 | 138; 3.25 | ||
Line 74: | Line 63: | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''La''' | |'''La''' | ||
|'''4\11''' | |'''4\11''' | ||
'''184; 1.625''' | '''184; 1.625''' | ||
Line 94: | Line 80: | ||
|Re#, La# | |Re#, La# | ||
|La# | |La# | ||
|5\11 | |5\11 | ||
230; 1.3 | 230; 1.3 | ||
Line 114: | Line 97: | ||
|'''Mib, Sib''' | |'''Mib, Sib''' | ||
|'''Sib''' | |'''Sib''' | ||
|'''7\11''' | |'''7\11''' | ||
'''323; 13''' | '''323; 13''' | ||
Line 132: | Line 112: | ||
|Mi, Si | |Mi, Si | ||
|Si | |Si | ||
|8\11 | |8\11 | ||
369; 4.{{Overline|3}} | 369; 4.{{Overline|3}} | ||
Line 152: | Line 129: | ||
|Mi#, Si# | |Mi#, Si# | ||
|Si# | |Si# | ||
|9\11 | |9\11 | ||
415; 2.6 | 415; 2.6 | ||
Line 172: | Line 146: | ||
|Dob, Solb | |Dob, Solb | ||
|Dob | |Dob | ||
|10\11 | |10\11 | ||
461; 1, 1.1{{Overline|6}} | 461; 1, 1.1{{Overline|6}} | ||
Line 190: | Line 161: | ||
!Do, Sol | !Do, Sol | ||
!Do | !Do | ||
!'''11\11''' | !'''11\11''' | ||
'''507; 1.{{Overline|4}}''' | '''507; 1.{{Overline|4}}''' | ||
Line 210: | Line 178: | ||
|Do#, Sol# | |Do#, Sol# | ||
|Do# | |Do# | ||
|12\11 | |12\11 | ||
553; 1.{{Overline|18}} | 553; 1.{{Overline|18}} | ||
Line 230: | Line 195: | ||
|Reb, Lab | |Reb, Lab | ||
|Reb | |Reb | ||
|14\11 | |14\11 | ||
646; 6.5 | 646; 6.5 | ||
Line 248: | Line 210: | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''Re''' | |'''Re''' | ||
|'''15\11''' | |'''15\11''' | ||
'''692; 3.25''' | '''692; 3.25''' | ||
Line 268: | Line 227: | ||
|Re#, La# | |Re#, La# | ||
|Re# | |Re# | ||
|16\11 | |16\11 | ||
738; 2.1{{Overline|6}} | 738; 2.1{{Overline|6}} | ||
Line 288: | Line 244: | ||
|'''Mib, Sib''' | |'''Mib, Sib''' | ||
|'''Mib''' | |'''Mib''' | ||
|'''18\11''' | |'''18\11''' | ||
'''830; 1.3''' | '''830; 1.3''' | ||
Line 306: | Line 259: | ||
|Mi, Si | |Mi, Si | ||
|Mi | |Mi | ||
|19\11 | |19\11 | ||
876; 1.08{{Overline|3}} | 876; 1.08{{Overline|3}} | ||
Line 326: | Line 276: | ||
|Mi#, Si# | |Mi#, Si# | ||
|Mi# | |Mi# | ||
|20\11 | |||
|20\11 | |||
923: 13 | 923: 13 | ||
| rowspan="2" |15\8 | | rowspan="2" |15\8 | ||
Line 346: | Line 293: | ||
|Dob, Solb | |Dob, Solb | ||
|Solb | |Solb | ||
|21\11 | |21\11 | ||
969; 4.{{Overline|3}} | 969; 4.{{Overline|3}} | ||
Line 364: | Line 308: | ||
!Do, Sol | !Do, Sol | ||
!Sol | !Sol | ||
!22\11 | !22\11 | ||
1015; 2.6 | 1015; 2.6 | ||
Line 381: | Line 322: | ||
!18\9 | !18\9 | ||
981.{{Overline|81}} | 981.{{Overline|81}} | ||
|} | |||
{| class="wikitable" | |||
! colspan="3" |Notation | |||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |- | ||
| | ! rowspan="2" |Mahur | ||
| | ! rowspan="2" |Bijou | ||
| | ! rowspan="2" |Hyperionic | ||
| | ! rowspan="2" |~11ed4/3 | ||
| | ! rowspan="2" |~8ed4/3 | ||
| | ! rowspan="2" |~13ed4/3 | ||
! rowspan="2" |~5ed4/3 | |||
! rowspan="2" |~12ed4/3 | |||
! rowspan="2" |~7ed4\3 | |||
! rowspan="2" |~9ed4/3 | |||
|- | |||
| | |||
|- | |- | ||
| | |G# | ||
| | |0#, D# | ||
| | |1# | ||
| | |1\11 | ||
46; 6.5 | |||
| | |1\8 | ||
63; 6.{{Overline|3}} | |||
| | |2\13 | ||
77; 2, 2.6 | |||
| | | rowspan="2" |1\5 | ||
100 | |||
| | |3\12 | ||
124; 7.25 | |||
| | |2\7 | ||
141; 5.{{Overline|6}} | |||
| | |3\9 | ||
163.{{Overline|63}} | |||
|- | |- | ||
| | |Jf, Af | ||
| | |1b, 1d | ||
|''' | |2f | ||
|''' | |3\11 | ||
|''' | 138; 3.25 | ||
|''' | |2\8 | ||
''' | 126; 3.1{{Overline|6}} | ||
|''' | |3\13 | ||
''' | 116; 7.75 | ||
|''' | |2\12 | ||
''' | 82; 1.3{{Overline|18}} | ||
|''' | |1\7 | ||
''' | 70; 1.7 | ||
|''' | |1\9 | ||
''' | 54.{{Overline|54}} | ||
|''' | |- | ||
''' | |'''J, A''' | ||
|''' | |'''1''' | ||
''' | |'''2''' | ||
|'''4\11''' | |||
'''184; 1.625''' | |||
|'''3\8''' | |||
'''189; 2.{{Overline|1}}''' | |||
|'''5\13''' | |||
'''193; 1, 1, 4.{{Overline|6}}''' | |||
|'''2\5''' | |||
'''200''' | |||
|'''5\12''' | |||
'''206; 1, 8.{{Overline|6}}''' | |||
|'''3\7''' | |||
'''211; 1, 3.25''' | |||
|'''4\9''' | |||
'''218.{{Overline|18}}''' | |||
|- | |- | ||
| | |J#, A# | ||
| | |1# | ||
| | |2# | ||
| | |5\11 | ||
230; 1.3 | |||
|4\8 | |||
252; 1.58{{Overline|3}} | |||
| | |7\13 | ||
270; 1.0{{Overline|3}} | |||
| | | rowspan="2" |'''3\5''' | ||
'''300''' | |||
| rowspan="2" |''' | |8\12 | ||
''' | 331; 29 | ||
| | |5\7 | ||
352; 1.0625 | |||
| | |7\9 | ||
381.{{Overline|81}} | |||
| | |||
|- | |- | ||
|''' | |'''Af, Bf''' | ||
|''' | |'''2b, 2d''' | ||
|'''3f''' | |||
|'''7\11''' | |||
|''' | '''323; 13''' | ||
|''' | |'''5\8''' | ||
''' | '''315; 1.2{{Overline|6}}''' | ||
|''' | |'''8\13''' | ||
''' | '''309; 1, 2.1''' | ||
|''' | |'''7\12''' | ||
''' | '''289; 1, 1.9''' | ||
|''' | |'''4\7''' | ||
''' | '''282; 2.8{{Overline|3}}''' | ||
|''' | |'''5\9''' | ||
''' | '''272.{{Overline|72}}''' | ||
|''' | |||
''' | |||
|- | |- | ||
| | |A, B | ||
| | |2 | ||
| | |3 | ||
|8 | |8\11 | ||
369; 4.{{Overline|3}} | |||
|6\8 | |||
378; 1.0{{Overline|5}} | |||
| | |10\13 | ||
387; 10.{{Overline|3}} | |||
| | |4\5 | ||
400 | |||
| | |10\12 | ||
413; 1, 3.8{{Overline|3}} | |||
| | |6\7 | ||
423; 1.{{Overline|8}} | |||
| | |8\9 | ||
436.{{Overline|36}} | |||
| | |||
|- | |- | ||
| | |A#, B# | ||
| | |2# | ||
| | |3# | ||
|9\11 | |||
|9 | 415; 2.6 | ||
| rowspan="2" |7\8 | |||
442; 9.5 | |||
| rowspan="2" | | |12\13 | ||
464; 1.9375 | |||
| | |5\5 | ||
500 | |||
| | |13\12 | ||
537; 14.5 | |||
| | |8\7 | ||
564; 1.41{{Overline|6}} | |||
| | |11\9 | ||
600 | |||
|- | |- | ||
| | |Bb, Cf | ||
| | |3b, 3d | ||
|4f | |||
|10\11 | |||
| | 461; 1, 1.1{{Overline|6}} | ||
| | |11\13 | ||
425; 1.24 | |||
| | |4\5 | ||
400 | |||
| | |9\12 | ||
372; 2.41{{Overline|6}} | |||
| | |5\7 | ||
352; 1.0625 | |||
| | |6\9 | ||
327.{{Overline|27}} | |||
| | |||
|- | |- | ||
! | !B, C | ||
! | !3 | ||
! | !4 | ||
!''' | !'''11\11''' | ||
'''507; 1.{{Overline|4}}''' | |||
!'''8\8''' | |||
'''505; 3.8''' | |||
!'''13\13''' | |||
'''503; 4, 2.{{Overline|3}}''' | |||
! | !'''5\5''' | ||
'''500''' | |||
! | !'''12\12''' | ||
'''496; 1.8125''' | |||
! | !'''7\7''' | ||
'''494; 8.5''' | |||
! | !'''9\9''' | ||
'''490.{{Overline|90}}''' | |||
! | |||
|- | |- | ||
| | |B#, C# | ||
| | |3# | ||
| | |4# | ||
|9 | |12\11 | ||
| | 553; 1.{{Overline|18}} | ||
| | |9\8 | ||
568; 2.375 | |||
| | |15\13 | ||
580; 1.55 | |||
| | | rowspan="2" |6\5 | ||
600 | |||
|15\12 | |||
620; 1.45 | |||
| | |9\7 | ||
635; 3.4 | |||
| | |12\9 | ||
654.{{Overline|54}} | |||
| | |- | ||
|Cf, Qf | |||
|4b, 4d | |||
|5f | |||
|14\11 | |||
646; 6.5 | |||
|10\8 | |||
631; 1.{{Overline|72}} | |||
|16\13 | |||
619; 2.{{Overline|81}} | |||
|14\12 | |||
579; 3.{{Overline|2}} | |||
|8\7 | |||
564; 1.41{{Overline|6}} | |||
|10\9 | |||
545.{{Overline|45}} | |||
|- | |- | ||
| | |'''C, Q''' | ||
| | |'''4''' | ||
| | |'''5''' | ||
| | |'''15\11''' | ||
'''692; 3.25''' | |||
| | |'''11\8''' | ||
'''694; 1, 2.8''' | |||
| | |'''18\13''' | ||
'''696; 1.291{{Overline|6}}''' | |||
| | |'''7\5''' | ||
'''700''' | |||
| | |'''17\12''' | ||
'''703; 2, 2.1{{Overline|6}}''' | |||
| | |'''10\7''' | ||
'''705; 1.1{{Overline|3}}''' | |||
| | |'''13\9''' | ||
'''709.{{Overline|09}}''' | |||
|- | |- | ||
|''' | |C#, Q# | ||
|4# | |||
|''' | |5# | ||
|''' | |16\11 | ||
|''' | 738; 2.1{{Overline|6}} | ||
|''' | |12\8 | ||
''' | 757; 1, 8.5 | ||
|''' | |20\13 | ||
''' | 774; 5.1{{Overline|6}} | ||
|''' | | rowspan="2" |'''8\5''' | ||
''' | '''800''' | ||
| | |20\12 | ||
827; 1, 1.41{{Overline|6}} | |||
|12\7 | |||
|''' | 847; 17 | ||
''' | |16\9 | ||
|''' | 872.{{Overline|72}} | ||
''' | |- | ||
|''' | |'''Qf, Df''' | ||
''' | |'''5b, 5d''' | ||
|'''6f''' | |||
|'''18\11''' | |||
'''830; 1.3''' | |||
|'''13\8''' | |||
'''821; 19''' | |||
|'''21\13''' | |||
'''812; 1, 9.{{Overline|3}}''' | |||
|'''19\12''' | |||
'''786; 4.8{{Overline|3}}''' | |||
|'''11\7''' | |||
'''776; 2.125''' | |||
|'''14\9''' | |||
'''763.{{Overline|63}}''' | |||
|- | |- | ||
| | |Q, D | ||
| | |5 | ||
| | |6 | ||
| | |19\11 | ||
876; 1.08{{Overline|3}} | |||
|14\8 | |||
884; 4.75 | |||
| | |23\13 | ||
890; 3.1 | |||
| | |9\5 | ||
900 | |||
| | |22\12 | ||
910; 2.9 | |||
| | |13\7 | ||
917; 1.{{Overline|54}} | |||
| | |17\9 | ||
927.{{Overline|27}} | |||
| | |||
|- | |- | ||
| | |Q#, D# | ||
| | |5# | ||
| | |6# | ||
|20\11 | |||
923: 13 | |||
| | | rowspan="2" |15\8 | ||
947; 2, 1.4 | |||
| | |25\13 | ||
967; 1, 2.875 | |||
|10\5 | |||
| | 1000 | ||
|25\12 | |||
| | 1034; 2, 14 | ||
|15\7 | |||
| | 1058; 1, 4.{{Overline|6}} | ||
|20\9 | |||
| | 1090.{{Overline|90}} | ||
|- | |- | ||
| | |Df, Sf | ||
| | |6b, 6d | ||
|7f | |||
|21\11 | |||
| | 969; 4.{{Overline|3}} | ||
| | |24\13 | ||
929; 31 | |||
| | |9\5 | ||
900 | |||
| | |21\12 | ||
868; 1, 28 | |||
| | |11\7 | ||
776; 2.125 | |||
| | |15\9 | ||
818.{{Overline|18}} | |||
| | |||
| | |||
|- | |- | ||
!D, S | |||
!6 | |||
!7 | |||
!22\11 | |||
1015; 2.6 | |||
!16\8 | |||
1010; 1.9 | |||
!26\13 | |||
1006; 2, 4.{{Overline|6}} | |||
!10\5 | |||
1000 | |||
!24\12 | |||
993; 9.{{Overline|6}} | |||
!14\7 | |||
988; 4.25 | |||
!18\9 | |||
981.{{Overline|81}} | |||
|- | |- | ||
| | |D#, S# | ||
| | |6# | ||
| | |7# | ||
| | |23\11 | ||
| | 1061; 1, 1.1{{Overline|6}} | ||
| | |17\8 | ||
1073; 1, 2.1{{Overline|6}} | |||
| | |28\13 | ||
1083; 1.{{Overline|148}} | |||
| | | rowspan="2" |11\5 | ||
1100 | |||
| | |27\12 | ||
1117; 4, 7 | |||
| | |16\7 | ||
1129; 2, 2.{{Overline|3}} | |||
| | |24\9 | ||
1309.{{Overline|09}} | |||
|- | |- | ||
|Ef | |||
|7b, 7d | |||
|8f | |||
|25\11 | |||
1153; 1.{{Overline|18}} | |||
|18\8 | |||
1136; 1.1875 | |||
|29\13 | |||
1122; 1.7{{Overline|2}} | |||
|26\12 | |||
1075; 1.16 | |||
|15\7 | |||
1058; 1, 4.{{Overline|6}} | |||
|19\9 | |||
1036.{{Overline|36}} | |||
|- | |- | ||
| | |'''E''' | ||
| | |'''7''' | ||
| | |'''8''' | ||
|'''26\11''' | |||
'''1200''' | |||
| | |'''19\8''' | ||
'''1200''' | |||
| | |'''31\13''' | ||
'''1200''' | |||
| | |'''12\5''' | ||
'''1200''' | |||
| | |'''29\12''' | ||
'''1200''' | |||
| | |'''17\7''' | ||
'''1200''' | |||
| | |'''22\9''' | ||
'''1200''' | |||
| | |||
|- | |- | ||
| | |E# | ||
| | |7# | ||
| | |8# | ||
| | |27\11 | ||
| | 1246; 6,5 | ||
|20\8 | |||
1263; 6.{{Overline|3}} | |||
| | |33\13 | ||
1277; 2, 2.6 | |||
| | | rowspan="2" |'''13\5''' | ||
'''1300''' | |||
| | |32\12 | ||
1324; 7.25 | |||
| | |19\7 | ||
1341; 5.{{Overline|6}} | |||
| | |25\9 | ||
1363.{{Overline|63}} | |||
|- | |- | ||
|''' | |'''Ff''' | ||
|''' | |'''8b, Fd''' | ||
|'''9f''' | |||
|'''29\11''' | |||
|''' | '''1338; 3.25''' | ||
|''' | |'''21\8''' | ||
''' | '''1326; 3.16̄''' | ||
|''' | |'''34\13''' | ||
''' | '''1316; 7.75''' | ||
|''' | |'''31\12''' | ||
''' | '''1282; 1.3{{Overline|18}}''' | ||
|''' | |'''18\7''' | ||
'''1270; 1.7''' | |||
|'''23\9''' | |||
''' | '''1254.{{Overline|54}}''' | ||
|''' | |||
''' | |||
|''' | |||
''' | |||
|- | |- | ||
| | |F | ||
| | |8, F | ||
|9 | |||
| | |30\11 | ||
1384; 1.625 | |||
| | |22\8 | ||
1389; 2.1̄ | |||
| | |36\13 | ||
1393; 1, 1, 4.{{Overline|6}} | |||
| | |14\5 | ||
1400 | |||
| | |34\12 | ||
1406; 1, 8.{{Overline|6}} | |||
| | |20\7 | ||
1411; 1, 3.25 | |||
| | |26\9 | ||
1418.{{Overline|18}} | |||
| | |||
|- | |- | ||
| | |F# | ||
| | |8#, F# | ||
|9# | |||
| | |31\11 | ||
| | 1430; 1.3 | ||
| rowspan="2" |23\8 | |||
1452; 1.58{{Overline|3}} | |||
| | |38\13 | ||
1470; 1.0{{Overline|3}} | |||
| | |15\5 | ||
1500 | |||
| | |37\12 | ||
1531; 29 | |||
| | |22\7 | ||
1552; 1.0625 | |||
| | |29\9 | ||
1581.{{Overline|81}} | |||
|- | |- | ||
| | |Gf | ||
| | |9b, Gd | ||
| | |Af | ||
| | |32\11 | ||
| | 1476; 1.08{{Overline|3}} | ||
| | |37\13 | ||
1432: 3.875 | |||
| | |14\5 | ||
1400 | |||
| | |33\12 | ||
1365; 1.9{{Overline|3}} | |||
| | |19\7 | ||
1341; 5.{{Overline|3}} | |||
|24\9 | |||
1309.{{Overline|09}} | |||
|- | |||
!G | |||
!'''9, G''' | |||
!A | |||
!33\11 | |||
1523; 13 | |||
!24\8 | |||
1515; 1.2{{Overline|6}} | |||
!39\13 | |||
1509; 1, 2.1 | |||
!15\5 | |||
1500 | |||
!36\12 | |||
1489; 1, 1.9 | |||
!21\7 | |||
1482; 2.8{{Overline|3}} | |||
!27\9 | |||
1472.{{Overline|72}} | |||
|- | |- | ||
| | |G# | ||
| | |9#, G# | ||
| | |A# | ||
| | |34\11 | ||
| | 1569; 4.{{Overline|3}} | ||
| | |25\8 | ||
1578; 1.05̄ | |||
| | |41\13 | ||
1587; 10.{{Overline|3}} | |||
| | | rowspan="2" |16\5 | ||
1600 | |||
| | |39\12 | ||
1613; 1, 3.8{{Overline|3}} | |||
| | |23\7 | ||
1623; 1.{{Overline|8}} | |||
| | |30\9 | ||
1636.{{Overline|36}} | |||
| | |||
|- | |- | ||
| | |Jf, Af | ||
| | |Xb, Ad | ||
|Bf | |||
|36\11 | |||
| | 1661; 1, 1.1{{Overline|6}} | ||
| | |26\8 | ||
1642; 9.5 | |||
|42\13 | |||
1625; 1.24 | |||
| | |38\12 | ||
1572; 29 | |||
| | |22\7 | ||
1552; 1.0625 | |||
| | |28\9 | ||
1527.{{Overline|27}} | |||
| | |||
|- | |- | ||
|'''J, A''' | |||
|'''X, A''' | |||
|'''B''' | |||
|'''37\11''' | |||
'''1707; 1.{{Overline|4}}''' | |||
|'''27\8''' | |||
'''1705; 3.8''' | |||
|'''44\13''' | |||
'''1703; 4, 2.3̄''' | |||
|'''17\5''' | |||
'''1700''' | |||
|'''41\12''' | |||
'''1696; 1.8125''' | |||
|'''24\7''' | |||
'''1694; 8.5''' | |||
|'''31\9''' | |||
'''1690.{{Overline|90}}''' | |||
|- | |- | ||
| | |J#, A# | ||
| | |X#, A# | ||
| | |B# | ||
| | |38\11 | ||
| | 1753; 1.{{Overline|18}} | ||
| | |28\8 | ||
| | 1768; 2.375 | ||
| | |46\13 | ||
1780; 1.55 | |||
| rowspan="2" |'''18\5''' | |||
'''1800''' | |||
|44\12 | |||
1820; 1.45 | |||
|26\7 | |||
1835; 3,4 | |||
|34\9 | |||
1854.{{Overline|54}} | |||
|- | |- | ||
| | |'''Af, Bf''' | ||
| | |'''Eb, Bd''' | ||
| | |'''Cf''' | ||
| | |'''40\11''' | ||
| | '''1846; 6.5''' | ||
| | |'''29\8''' | ||
| | |||
'''1831; 1.{{Overline|72}}''' | |||
| | |'''47\13''' | ||
| | '''1819; 2.{{Overline|81}}''' | ||
| | |'''43\12''' | ||
| | '''1779; 3.{{Overline|2}}''' | ||
| | |'''25\7''' | ||
'''1764; 1, 3.25''' | |||
|'''32\9''' | |||
'''1745.{{Overline|45}}''' | |||
|- | |- | ||
| | |A, B | ||
| | |E, B | ||
|3 | |C | ||
| | |41\11 | ||
| | 1892; 3.25 | ||
| | |30\8 | ||
| | 1894; 1, 2.8 | ||
| | |49\13 | ||
1896; 1.291{{Overline|6}} | |||
|19\5 | |||
1900 | |||
|46\12 | |||
1903; 2, 2.1{{Overline|6}} | |||
|27\7 | |||
1905; 1, 7.5 | |||
|35\9 | |||
1909.{{Overline|09}} | |||
|- | |- | ||
| | |A#, B# | ||
| | |E#, B# | ||
| | |C# | ||
|42\11 | |||
1938; 2.1{{Overline|6}} | |||
| | | rowspan="2" |31\8 | ||
|} | 1957; 1, 8.5 | ||
|51\13 | |||
1974; 5.1{{Overline|6}} | |||
|20\5 | |||
| | 2000 | ||
|49\12 | |||
| | 2027; 1, 1.41{{Overline|6}} | ||
|29\7 | |||
| | 2047; 17 | ||
|38\9 | |||
| | 2072.{{Overline|72}} | ||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |Bb, Cf | ||
| | |0b, Dd | ||
| | |Df | ||
| | |43\15 | ||
| | 1984; 1.625 | ||
| | |50\13 | ||
| | 1935; 2.0{{Overline|6}} | ||
| | |19\5 | ||
| | 1900 | ||
| | |45\12 | ||
| | 1862; 14.5 | ||
|26\7 | |||
1835; 3,4 | |||
{| | |33\9 | ||
! | 1800 | ||
! | |- | ||
!B, C | |||
! | !0, D | ||
!D | |||
!44\11 | |||
2030; 1.3 | |||
!32\8 | |||
2021; 19 | |||
!52\13 | |||
2012; 1, 9.{{Overline|3}} | |||
!20\5 | |||
2000 | |||
!48\12 | |||
1986; 4.8{{Overline|3}} | |||
!28\7 | |||
1976; 2.125 | |||
!36\9 | |||
1963.{{Overline|63}} | |||
|- | |- | ||
|B#, C# | |||
|0#, D# | |||
|D# | |||
|45\11 | |||
2076; 1.08{{Overline|3}} | |||
|33\8 | |||
2084; 4.75 | |||
|54\13 | |||
2090; 3.1 | |||
| rowspan="2" |21\5 | |||
2100 | |||
|51\12 | |||
2110; 2.9 | |||
|30\7 | |||
2117; 1.{{Overline|54}} | |||
|39\9 | |||
2127.{{Overline|27}} | |||
|- | |- | ||
| | |Cf, Qf | ||
| | |1b, 1d | ||
| | |Ef | ||
| | |47\11 | ||
| | 2169; 4.{{Overline|3}} | ||
| | |34\8 | ||
2147; 2, 1.4 | |||
| | |55\13 | ||
2129; 31 | |||
| | |50\12 | ||
| | 2068; 1, 28 | ||
|29\7 | |||
2047; 17 | |||
|37\9 | |||
2018.{{Overline|18}} | |||
|- | |- | ||
| | |'''C, Q''' | ||
| | |'''1''' | ||
| | |'''E''' | ||
| | |'''48\11''' | ||
'''2215; 2.6''' | |||
| | |'''35\8''' | ||
'''2210; 1.9''' | |||
|'''57\13''' | |||
'''2206; 2, 4.{{Overline|6}}''' | |||
|'''22\5''' | |||
'''2200''' | |||
|'''53\12''' | |||
'''2193; 9.{{Overline|6}}''' | |||
|'''31\7''' | |||
'''2188; 4.25''' | |||
|'''40\9''' | |||
'''2181.{{Overline|81}}''' | |||
|- | |||
|C#, Q# | |||
|1# | |||
|E# | |||
|49\11 | |||
2261; 1, 1.1{{Overline|6}} | |||
|36\8 | |||
2273; 1, 2.1{{Overline|6}} | |||
|59\13 | |||
2083; 1.{{Overline|148}} | |||
| rowspan="2" |'''23\5''' | |||
'''2300''' | |||
|56\12 | |||
{| | 2327; 4, 7 | ||
|33\7 | |||
2329; 2, 2.{{Overline|3}} | |||
|43\9 | |||
2345.{{Overline|45}} | |||
|- | |- | ||
| | |'''Qf, Df''' | ||
| | |'''2b, 2d''' | ||
| | |'''Ff''' | ||
| | |'''51\11''' | ||
|1 | '''2353; 1.{{Overline|18}}''' | ||
|1 | |'''37\8''' | ||
|1. | '''2336; 1.1875''' | ||
| | |'''61\13''' | ||
'''2322; 1.7{{Overline|2}}''' | |||
|'''55\12''' | |||
'''2275; 1.16''' | |||
|'''32\7''' | |||
'''2258; 1, 4.{{Overline|6}}''' | |||
|'''41\9''' | |||
'''2236.{{Overline|36}}''' | |||
|- | |- | ||
| | |Q, D | ||
| | |2 | ||
| | |F | ||
| | |52\11 | ||
| | 2400 | ||
|5 | |38\8 | ||
| | 2400 | ||
| | |62\13 | ||
2400 | |||
|24\5 | |||
2400 | |||
|58\12 | |||
2400 | |||
|34\7 | |||
2400 | |||
|44\9 | |||
2400 | |||
|- | |- | ||
| | |Q#, D# | ||
|11\ | |2# | ||
| | |F# | ||
| | |53\11 | ||
| | 2446; 6.5 | ||
| rowspan="2" |39\8 | |||
2463; 6.{{Overline|3}} | |||
| | |64\13 | ||
2477; 2, 2.6 | |||
|25\5 | |||
2500 | |||
|61\12 | |||
2524; 7.25 | |||
|36\7 | |||
2541; 5.{{Overline|6}} | |||
|47/9 | |||
2563.{{Overline|63}} | |||
|- | |- | ||
| | |Df, Sf | ||
| | |3b, 3d | ||
| | |1f | ||
| | |54\11 | ||
|5 | 2492; 3.25 | ||
| | |63\13 | ||
2438; 1.1{{Overline|36}} | |||
|24\5 | |||
| | 2400 | ||
|57\12 | |||
2358; 1.61̄ | |||
|33\7 | |||
2329; 2, 2.{{Overline|3}} | |||
| | |42\9 | ||
| | 2390.{{Overline|90}} | ||
| | |||
|- | |- | ||
| | !D, S | ||
| | !3 | ||
!1 | |||
!55\11 | |||
2538; 2.1{{Overline|6}} | |||
| | !40\8 | ||
| | 2526; 3.1{{Overline|6}} | ||
| | !65\13 | ||
2516; 7.75 | |||
!25\5 | |||
2500 | |||
!60\12 | |||
2482; '''1.3{{Overline|18}}''' | |||
!35\7 | |||
2470; 1.7 | |||
!45\9 | |||
2454.{{Overline|54}} | |||
|} | |||
==Intervals== | |||
{| class="wikitable" | |||
!Generators | |||
!Fourth notation | |||
!Interval category name | |||
!Generators | |||
!Notation of 4/3 inverse | |||
!Interval category name | |||
|- | |- | ||
| | | colspan="6" |The 3-note MOS has the following intervals (from some root): | ||
|3 | |||
|- | |- | ||
| | |0 | ||
| | |Do, Sol | ||
| | |perfect unison | ||
| | |0 | ||
|Do, Sol | |||
|perfect fourth | |||
| | |||
| | |||
|- | |- | ||
| | |1 | ||
| | |Mib, Sib | ||
| | |diminished third | ||
| | | -1 | ||
| | |Re, La | ||
|perfect second | |||
| | |||
|- | |- | ||
| | |2 | ||
| | |Reb, Lab | ||
| | |diminished second | ||
| | | -2 | ||
|Mi, Si | |||
|perfect third | |||
| | |||
| | |||
|- | |- | ||
| | | colspan="6" |The chromatic 5-note MOS also has the following intervals (from some root): | ||
| | |||
|- | |- | ||
| | |3 | ||
| | |Dob, Solb | ||
|diminished fourth | |||
| -3 | |||
| | |Do#, Sol# | ||
| | |augmented unison (chroma) | ||
| | |||
| | |||
|- | |- | ||
| | |4 | ||
| | |Mibb, Sibb | ||
| | |doubly diminished third | ||
| | | -4 | ||
| | |Re#, La# | ||
| | |augmented second | ||
| | |} | ||
| | ==Genchain== | ||
| | The generator chain for this scale is as follows: | ||
| | {| class="wikitable" | ||
| | |Mibb | ||
| | Sibb | ||
| | |Dob | ||
| | Solb | ||
| | |Reb | ||
| | Lab | ||
| | |Mib | ||
Sib | |||
|Do | |||
Sol | |||
|Re | |||
La | |||
|Mi | |||
Si | |||
|Do# | |||
Sol# | |||
|Re# | |||
La# | |||
|Mi# | |||
Si# | |||
|- | |- | ||
| | |dd3 | ||
| | |d4 | ||
| | |d2 | ||
| | |d3 | ||
| | |P1 | ||
| | |P2 | ||
| | |P3 | ||
| | |A1 | ||
|A2 | |||
|A3 | |||
|} | |||
==Modes== | |||
The mode names are based on the species of fourth: | |||
{| class="wikitable" | |||
!Mode | |||
!Scale | |||
![[Modal UDP Notation|UDP]] | |||
! colspan="2" |Interval type | |||
|- | |||
!name | |||
!pattern | |||
!notation | |||
!2nd | |||
!3rd | |||
|- | |- | ||
| | |Major | ||
| | |LLs | ||
| | |<nowiki>2|0</nowiki> | ||
|P | |||
|P | |||
| | |||
| | |||
| | |||
|- | |- | ||
| | |Minor | ||
| | |LsL | ||
| | |<nowiki>1|1</nowiki> | ||
| | |P | ||
| | |d | ||
| | |||
|- | |- | ||
|Phrygian | |||
|LsLL | |||
|<nowiki>0|2</nowiki> | |||
|d | |||
|d | |||
|} | |||
==Temperaments== | |||
The most basic rank-2 temperament interpretation of diatonic is '''Mahuric'''. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled <code>root-2g-(p+g)</code> (p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations. | |||
==='''Mahuric-Meantone'''=== | |||
[[Subgroup]]: 4/3.5/4.3/2 | |||
[[Comma]] list: [[81/80]] | |||
[[POL2]] generator: ~9/8 = 193.6725¢ | |||
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}] | |||
[[Optimal ET sequence]]: ~(5ed4/3, 8ed4/3, 13ed4/3) | |||
==='''Mahuric-Superpyth'''=== | |||
[[Subgroup]]: 4/3.9/7.3/2 | |||
[[Comma]] list: [[64/63]] | |||
[[POL2]] generator: ~8/7 = 216.7325¢ | |||
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}] | |||
[[Optimal ET sequence]]: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3) | |||
====Scale tree==== | |||
The spectrum looks like this: | |||
{| class="wikitable" | |||
! colspan="3" |Generator | |||
(bright) | |||
!Cents<ref name=":05" /> | |||
!L | |||
!s | |||
!L/s | |||
!Comments | |||
|- | |||
|1\3 | |||
| | |||
| | | | ||
| | |171; 2.{{Overline|3}} | ||
|1 | |||
|1 | |||
|1.000 | |||
|Equalised | |||
|1 | |||
| | |||
|1. | |||
| | |||
|- | |- | ||
|6\17 | |||
| | | | ||
| | | | ||
| | |180 | ||
| | |6 | ||
|5 | |||
| | |1.200 | ||
|1. | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\31 | ||
| | | | ||
| | |180; 1.21{{Overline|6}} | ||
| | |11 | ||
| | |9 | ||
|1. | |1.222 | ||
| | | | ||
|- | |- | ||
|5\14 | |||
| | | | ||
| | | | ||
| | |181.{{Overline|81}} | ||
|5 | |5 | ||
|1. | |4 | ||
|1.250 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |14\39 | ||
| | | | ||
| | |182; 1, 1.5 | ||
|14 | |||
|11 | |11 | ||
|1.273 | |||
|1. | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |9\25 | ||
| | | | ||
| | |183; 19.{{Overline|6}} | ||
| | |9 | ||
|7 | |7 | ||
|1. | |1.286 | ||
| | | | ||
|- | |- | ||
|4\11 | |||
| | | | ||
| | | | ||
| | |184; 1.625 | ||
| | |4 | ||
| | |3 | ||
|1. | |1.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |15\41 | ||
| | | | ||
| | |185; 1.7{{Overline|63}} | ||
| | |15 | ||
| | |11 | ||
|1. | |1.364 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\30 | ||
| | | | ||
| | |185, 1, 10.8{{Overline|3}} | ||
| | |11 | ||
| | |8 | ||
|1. | |1.375 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |7\19 | ||
| | | | ||
| | |186.{{Overline|6}} | ||
| | |7 | ||
| | |5 | ||
|1. | |1.400 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |10\27 | ||
| | | | ||
| | |187.5 | ||
| | |10 | ||
| | |7 | ||
|1. | |1.429 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |13\35 | ||
| | | | ||
| | |187; 1, 19.75 | ||
|13 | |13 | ||
|1. | |9 | ||
|1.444 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |16\43 | ||
| | | | ||
| | |188; 4.25 | ||
| | |16 | ||
| | |11 | ||
|1. | |1.4545 | ||
| | | | ||
|- | |- | ||
|3\8 | |||
| | | | ||
| | | | ||
|189; 2.{{Overline|1}} | |||
|3 | |||
|2 | |||
|1.500 | |||
|Mahuric-Meantone starts here | |||
|- | |- | ||
| | | | ||
| | |14\37 | ||
| | | | ||
| | |190.{{Overline|90}} | ||
| | |14 | ||
| | |9 | ||
|1. | |1.556 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\29 | ||
| | | | ||
| | |191; 3, 2.{{Overline|3}} | ||
| | |11 | ||
| | |7 | ||
|1. | |1.571 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |8\21 | ||
| | | | ||
| | |192 | ||
| | |8 | ||
| | |5 | ||
|1. | |1.600 | ||
| | | | ||
|- | |- | ||
| | | | ||
|5\13 | |||
| | | | ||
| | |193; 1, 1, 4.{{Overline|6}} | ||
|5 | |||
|3 | |||
|1.667 | |||
| | |||
| | |||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
| | |12\31 | ||
| | |194.{{Overline|594}} | ||
|12 | |||
|7 | |7 | ||
| | |1.714 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |7\18 | ||
| | | | ||
| | |195; 2.8{{Overline|6}} | ||
| | |7 | ||
| | |4 | ||
| | |1.750 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |9\23 | ||
| | | | ||
| | |196.{{Overline|36}} | ||
| | |9 | ||
|5 | |5 | ||
| | |1.800 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\28 | ||
| | | | ||
| | |197; 67 | ||
| | |11 | ||
| | |6 | ||
| | |1.833 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |13\33 | ||
| | | | ||
| | |197; 2.{{Overline|135}} | ||
|13 | |||
|7 | |7 | ||
| | |1.857 | ||
| | | | ||
|- | |- | ||
| | | | ||
|15\38 | |||
| | | | ||
| | |197; 1, 2, 1, 1.{{Overline|54}} | ||
|15 | |||
| | |8 | ||
| | |1.875 | ||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
|17\43 | |||
| | | | ||
|17 | |198; 17.1{{Overline|6}} | ||
|17 | |17 | ||
| | |9 | ||
| | |1.889 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |19\48 | ||
| | |||
|198: 3, 1, 28 | |||
|19 | |||
|10 | |||
|1.900 | |||
| | | | ||
|- | |- | ||
| | | | ||
|21\53 | |||
| | | | ||
| | |198; 2.3{{Overline|518}} | ||
|21 | |||
| | |11 | ||
| | |1.909 | ||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
|23\58 | |||
| | | | ||
| | |198; 1, 3, 1.7 | ||
|23 | |||
| | |12 | ||
| | |1.917 | ||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |25\63 | ||
| | | | ||
| | |198; 1, 2, 12.25 | ||
|25 | |||
|13 | |||
|1.923 | |||
| | |||
| | |||
| | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |27\68 | ||
| | | | ||
| | |198; 1, 3.{{Overline|405}} | ||
|27 | |||
|14 | |14 | ||
| | |1.929 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |29\73 | ||
| | | | ||
| | |198; 1, 1.1{{Overline|6}} | ||
| | |29 | ||
| | |15 | ||
| | |1.933 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |31\78 | ||
| | | | ||
| | |198; 1, 12, 2.8 | ||
| | |31 | ||
| | |16 | ||
| | |1.9375 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |33\83 | ||
| | | | ||
| | |198; 1.{{Overline|005}} | ||
| | |33 | ||
| | |17 | ||
| | |1.941 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |35\88 | ||
| | | | ||
| | |199; 19.{{Overline|18}} | ||
| | |35 | ||
| | |18 | ||
| | |1.944 | ||
| | | | ||
|- | |- | ||
| | |2\5 | ||
| | | | ||
| | | | ||
| | |200 | ||
| | |2 | ||
|1 | |1 | ||
| | |2.000 | ||
|Mahuric- | |Mahuric-Meantone ends, Mahuric-Pythagorean begins | ||
|- | |- | ||
| | | | ||
| | |17\42 | ||
| | | | ||
| | |201.{{Overline|9801}} | ||
| | |17 | ||
| | |8 | ||
| | |2.125 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |15\37 | ||
| | | | ||
| | |202; 4.0{{Overline|45}} | ||
| | |15 | ||
| | |7 | ||
| | |2.143 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |13\32 | ||
| | | | ||
| | |202; 1, 1, 2.0{{Overline|6}} | ||
| | |13 | ||
| | |6 | ||
| | |2.167 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |11\27 | ||
| | | | ||
| | |203; 13 | ||
| | |11 | ||
| | |5 | ||
| | |2.200 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |9\22 | ||
| | | | ||
| | |203; 1, 3.41{{Overline|6}} | ||
| | |9 | ||
| | |4 | ||
| | |2.250 | ||
| | | | ||
|- | |- | ||
| | | | ||
|7\ | |7\17 | ||
| | | | ||
| | |204; 1. 7.2 | ||
|7 | |7 | ||
| | |3 | ||
| | |2.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
| | |12\29 | ||
| | |205; 1.4 | ||
| | |12 | ||
|5 | |5 | ||
| | |2.400 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |5\12 | ||
| | | | ||
|206; 1, 8.{{Overline|6}} | |||
|5 | |||
|2 | |||
|2.500 | |||
|Mahuric-Neogothic heartland is from here… | |||
|- | |- | ||
| | | | ||
| | | | ||
| | |18\43 | ||
| | |207; 1.{{Overline|4}} | ||
| | |18 | ||
| | |7 | ||
|2.571 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
| | |13\31 | ||
| | |208 | ||
|13 | |||
|5 | |5 | ||
| | |2.600 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |8\19 | ||
| | | | ||
|208; 1.4375 | |||
|8 | |||
|3 | |||
|2.667 | |||
|…to here | |||
|- | |- | ||
| | | | ||
|11\26 | |||
| | | | ||
| | |209; 1.{{Overline|90}} | ||
|11 | |||
|4 | |4 | ||
| | |2.750 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |14\33 | ||
| | | | ||
| | |210 | ||
| | |14 | ||
| | |5 | ||
| | |2.800 | ||
| | | | ||
|- | |- | ||
|3\7 | |||
| | | | ||
| | | | ||
| | |211; 1, 3.25 | ||
|3 | |3 | ||
| | |1 | ||
| | |3.000 | ||
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins | |||
|- | |- | ||
| | | | ||
| | |22\51 | ||
| | | | ||
| | |212; 1, 9.{{Overline|3}} | ||
| | |22 | ||
| | |7 | ||
| | |3.143 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |19\44 | ||
| | | | ||
| | |213; 11.{{Overline|8}} | ||
| | |19 | ||
|3 | |6 | ||
|3.167 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |16\37 | ||
| | | | ||
| | |213.3̄ | ||
| | |16 | ||
| | |5 | ||
| | |3.200 | ||
| | | | ||
|- | |- | ||
| | | | ||
|13\30 | |||
| | |||
|213; 1, 2.3{{Overline|18}} | |||
|13 | |||
|4 | |||
|3.250 | |||
| | | | ||
|- | |- | ||
| | | | ||
| | |10\23 | ||
| | | | ||
| | |214; 3.5 | ||
| | |10 | ||
|3 | |3 | ||
| | |3.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
|11\ | |7\16 | ||
| | |||
|215; 2.6 | |||
|7 | |||
|2 | |||
|3.500 | |||
| | |||
|- | |||
| | |||
|11\25 | |||
| | | | ||
| | |216; 2.541{{Overline|6}} | ||
|11 | |11 | ||
| | |3 | ||
| | |3.667 | ||
| | |||
|- | |||
| | |||
|15\34 | |||
| | | | ||
|- | |216; 1.152{{Overline|7}} | ||
| | |15 | ||
|17\37 | |4 | ||
| | |3.750 | ||
|224; 5.7{{Overline|2}} | | | ||
|17 | |- | ||
|3 | | | ||
|5.667 | |19\43 | ||
| | | | ||
|- | |217; 7 | ||
|6\13 | |19 | ||
| | |5 | ||
| | |3.800 | ||
|225 | | | ||
|6 | |- | ||
|1 | |4\9 | ||
|6.000 | | | ||
| | | | ||
|- | |218.{{Overline|18}} | ||
|1\3 | |4 | ||
| | |1 | ||
| | |4.000 | ||
|240 | | | ||
|1 | |- | ||
|0 | | | ||
|→ inf | |13\29 | ||
|Paucitonic | | | ||
|} | |219; 1, 2.55 | ||
|13 | |||
|3 | |||
|4.333 | |||
| | |||
|- | |||
| | |||
|9\20 | |||
| | |||
|220; 2.45 | |||
|9 | |||
|2 | |||
|4.500 | |||
| | |||
|- | |||
| | |||
|14\31 | |||
| | |||
|221; 19 | |||
|14 | |||
|3 | |||
|4.667 | |||
| | |||
|- | |||
|5\11 | |||
| | |||
| | |||
|222.{{Overline|2}} | |||
|5 | |||
|1 | |||
|5.000 | |||
|Mahuric-Superpyth ends | |||
|- | |||
| | |||
|11\24 | |||
| | |||
|223; 1, 2.6875 | |||
|11 | |||
|2 | |||
|5.500 | |||
| | |||
|- | |||
| | |||
|17\37 | |||
| | |||
|224; 5.7{{Overline|2}} | |||
|17 | |||
|3 | |||
|5.667 | |||
| | |||
|- | |||
|6\13 | |||
| | |||
| | |||
|225 | |||
|6 | |||
|1 | |||
|6.000 | |||
| | |||
|- | |||
|1\3 | |||
| | |||
| | |||
|240 | |||
|1 | |||
|0 | |||
|→ inf | |||
|Paucitonic | |||
|} | |||
== See also == | |||
[[2L 1s (4/3-equivalent)]] - idealized tuning | |||
[[4L 2s (7/4-equivalent)]] - Mixolydian Archytas temperament | |||
[[4L 2s (39/22-equivalent)]] - Mixolydian Neogothic temperament | |||
[[4L 2s (9/5-equivalent)]] - Mixolydian Meantone temperament | |||
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament | |||
[[6L 3s (26/11-equivalent)]] - Mahuric-Neogothic temperament | |||
[[6L 3s (12/5-equivalent)]] - Mahuric-Meantone temperament | |||
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament | |||
[[8L 4s (22/7-equivalent)]] - Bijou Neogothic temperament | |||
[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament | |||
[[10L 5s (112/27-equivalent)]] - Hyperionic Archytas temperament | |||
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament | |||
[[10L 5s (30/7-equivalent)]] - Hyperionic Meantone temperament<references /> | |||
[[ |
Revision as of 23:21, 16 June 2023
2L 1s<perfect fourth>, is a perfect fourth-repeating MOS scale. The notation "<perfect fourth>" means the period of the MOS is a perfect fourth, disambiguating it from octave-repeating 2L 1s.
The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).
In the fourth-repeating version of the diatonic scale, each tone has a 4/3 perfect fourth above it. The scale has one major chord and two minor chords.
Basic diatonic is in 5ed4/3, which is a very good fourth-based equal tuning similar to 12edo.
Notation
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the genchain harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s] or a minor sixteenth which is the Phrygian mode of Hyperionic. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth and 15 in quintuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal or hex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 with flats written F molle) may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Fourth | Seventh | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
Do#, Sol# | Sol# | 1\11
46; 6.5 |
1\8
63; 6.3 |
2\13
77; 2, 2.6 |
1\5
100 |
3\12
124; 7.25 |
2\7
141; 5.6 |
3\9
163.63 |
Reb, Lab | Lab | 3\11
138; 3.25 |
2\8
126; 3.16 |
3\13
116; 7.75 |
2\12
82; 1.318 |
1\7
70; 1.7 |
1\9
54.54 | |
Re, La | La | 4\11
184; 1.625 |
3\8
189; 2.1 |
5\13
193; 1, 1, 4.6 |
2\5
200 |
5\12
206; 1, 8.6 |
3\7
211; 1, 3.25 |
4\9
218.18 |
Re#, La# | La# | 5\11
230; 1.3 |
4\8
252; 1.583 |
7\13
270; 1.03 |
3\5
300 |
8\12
331; 29 |
5\7
352; 1.0625 |
7\9
381.81 |
Mib, Sib | Sib | 7\11
323; 13 |
5\8
315; 1.26 |
8\13
309; 1, 2.1 |
7\12
289; 1, 1.9 |
4\7
282; 2.83 |
5\9
272.72 | |
Mi, Si | Si | 8\11
369; 4.3 |
6\8
378; 1.05 |
10\13
387; 10.3 |
4\5
400 |
10\12
413; 1, 3.83 |
6\7
423; 1.8 |
8\9
436.36 |
Mi#, Si# | Si# | 9\11
415; 2.6 |
7\8
442; 9.5 |
12\13
464; 1.9375 |
5\5
500 |
13\12
537; 14.5 |
8\7
564; 1.416 |
11\9
600 |
Dob, Solb | Dob | 10\11
461; 1, 1.16 |
11\13
425; 1.24 |
4\5
400 |
9\12
372; 2.416 |
5\7
352; 1.0625 |
6\9
327.27 | |
Do, Sol | Do | 11\11
507; 1.4 |
8\8
505; 3.8 |
13\13
503; 4, 2.3 |
5\5
500 |
12\12
496; 1.8125 |
7\7
494; 8.5 |
9\9
490.90 |
Do#, Sol# | Do# | 12\11
553; 1.18 |
9\8
568; 2.375 |
15\13
580; 1.55 |
6\5
600 |
15\12
620; 1.45 |
9\7
635; 3.4 |
12\9
654.54 |
Reb, Lab | Reb | 14\11
646; 6.5 |
10\8
631; 1.72 |
16\13
619; 2.81 |
14\12
579; 3.2 |
8\7
564; 1.416 |
10\9
545.45 | |
Re, La | Re | 15\11
692; 3.25 |
11\8
694; 1, 2.8 |
18\13
696; 1.2916 |
7\5
700 |
17\12
703; 2, 2.16 |
10\7
705; 1.13 |
13\9
709.09 |
Re#, La# | Re# | 16\11
738; 2.16 |
12\8
757; 1, 8.5 |
20\13
774; 5.16 |
8\5
800 |
20\12
827; 1, 1.416 |
12\7
847; 17 |
16\9
872.72 |
Mib, Sib | Mib | 18\11
830; 1.3 |
13\8
821; 19 |
21\13
812; 1, 9.3 |
19\12
786; 4.83 |
11\7
776; 2.125 |
14\9
763.63 | |
Mi, Si | Mi | 19\11
876; 1.083 |
14\8
884; 4.75 |
23\13
890; 3.1 |
9\5
900 |
22\12
910; 2.9 |
13\7
917; 1.54 |
17\9
927.27 |
Mi#, Si# | Mi# | 20\11
923: 13 |
15\8
947; 2, 1.4 |
25\13
967; 1, 2.875 |
10\5
1000 |
25\12
1034; 2, 14 |
15\7
1058; 1, 4.6 |
20\9
1090.90 |
Dob, Solb | Solb | 21\11
969; 4.3 |
24\13
929; 31 |
9\5
900 |
21\12
868; 1, 28 |
11\7
776; 2.125 |
15\9
818.18 | |
Do, Sol | Sol | 22\11
1015; 2.6 |
16\8
1010; 1.9 |
26\13
1006; 2, 4.6 |
10\5
1000 |
24\12
993; 9.6 |
14\7
988; 4.25 |
18\9
981.81 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | ||
---|---|---|---|---|---|---|---|---|---|
Mahur | Bijou | Hyperionic | ~11ed4/3 | ~8ed4/3 | ~13ed4/3 | ~5ed4/3 | ~12ed4/3 | ~7ed4\3 | ~9ed4/3 |
G# | 0#, D# | 1# | 1\11
46; 6.5 |
1\8
63; 6.3 |
2\13
77; 2, 2.6 |
1\5
100 |
3\12
124; 7.25 |
2\7
141; 5.6 |
3\9
163.63 |
Jf, Af | 1b, 1d | 2f | 3\11
138; 3.25 |
2\8
126; 3.16 |
3\13
116; 7.75 |
2\12
82; 1.318 |
1\7
70; 1.7 |
1\9
54.54 | |
J, A | 1 | 2 | 4\11
184; 1.625 |
3\8
189; 2.1 |
5\13
193; 1, 1, 4.6 |
2\5
200 |
5\12
206; 1, 8.6 |
3\7
211; 1, 3.25 |
4\9
218.18 |
J#, A# | 1# | 2# | 5\11
230; 1.3 |
4\8
252; 1.583 |
7\13
270; 1.03 |
3\5
300 |
8\12
331; 29 |
5\7
352; 1.0625 |
7\9
381.81 |
Af, Bf | 2b, 2d | 3f | 7\11
323; 13 |
5\8
315; 1.26 |
8\13
309; 1, 2.1 |
7\12
289; 1, 1.9 |
4\7
282; 2.83 |
5\9
272.72 | |
A, B | 2 | 3 | 8\11
369; 4.3 |
6\8
378; 1.05 |
10\13
387; 10.3 |
4\5
400 |
10\12
413; 1, 3.83 |
6\7
423; 1.8 |
8\9
436.36 |
A#, B# | 2# | 3# | 9\11
415; 2.6 |
7\8
442; 9.5 |
12\13
464; 1.9375 |
5\5
500 |
13\12
537; 14.5 |
8\7
564; 1.416 |
11\9
600 |
Bb, Cf | 3b, 3d | 4f | 10\11
461; 1, 1.16 |
11\13
425; 1.24 |
4\5
400 |
9\12
372; 2.416 |
5\7
352; 1.0625 |
6\9
327.27 | |
B, C | 3 | 4 | 11\11
507; 1.4 |
8\8
505; 3.8 |
13\13
503; 4, 2.3 |
5\5
500 |
12\12
496; 1.8125 |
7\7
494; 8.5 |
9\9
490.90 |
B#, C# | 3# | 4# | 12\11
553; 1.18 |
9\8
568; 2.375 |
15\13
580; 1.55 |
6\5
600 |
15\12
620; 1.45 |
9\7
635; 3.4 |
12\9
654.54 |
Cf, Qf | 4b, 4d | 5f | 14\11
646; 6.5 |
10\8
631; 1.72 |
16\13
619; 2.81 |
14\12
579; 3.2 |
8\7
564; 1.416 |
10\9
545.45 | |
C, Q | 4 | 5 | 15\11
692; 3.25 |
11\8
694; 1, 2.8 |
18\13
696; 1.2916 |
7\5
700 |
17\12
703; 2, 2.16 |
10\7
705; 1.13 |
13\9
709.09 |
C#, Q# | 4# | 5# | 16\11
738; 2.16 |
12\8
757; 1, 8.5 |
20\13
774; 5.16 |
8\5
800 |
20\12
827; 1, 1.416 |
12\7
847; 17 |
16\9
872.72 |
Qf, Df | 5b, 5d | 6f | 18\11
830; 1.3 |
13\8
821; 19 |
21\13
812; 1, 9.3 |
19\12
786; 4.83 |
11\7
776; 2.125 |
14\9
763.63 | |
Q, D | 5 | 6 | 19\11
876; 1.083 |
14\8
884; 4.75 |
23\13
890; 3.1 |
9\5
900 |
22\12
910; 2.9 |
13\7
917; 1.54 |
17\9
927.27 |
Q#, D# | 5# | 6# | 20\11
923: 13 |
15\8
947; 2, 1.4 |
25\13
967; 1, 2.875 |
10\5
1000 |
25\12
1034; 2, 14 |
15\7
1058; 1, 4.6 |
20\9
1090.90 |
Df, Sf | 6b, 6d | 7f | 21\11
969; 4.3 |
24\13
929; 31 |
9\5
900 |
21\12
868; 1, 28 |
11\7
776; 2.125 |
15\9
818.18 | |
D, S | 6 | 7 | 22\11
1015; 2.6 |
16\8
1010; 1.9 |
26\13
1006; 2, 4.6 |
10\5
1000 |
24\12
993; 9.6 |
14\7
988; 4.25 |
18\9
981.81 |
D#, S# | 6# | 7# | 23\11
1061; 1, 1.16 |
17\8
1073; 1, 2.16 |
28\13
1083; 1.148 |
11\5
1100 |
27\12
1117; 4, 7 |
16\7
1129; 2, 2.3 |
24\9
1309.09 |
Ef | 7b, 7d | 8f | 25\11
1153; 1.18 |
18\8
1136; 1.1875 |
29\13
1122; 1.72 |
26\12
1075; 1.16 |
15\7
1058; 1, 4.6 |
19\9
1036.36 | |
E | 7 | 8 | 26\11
1200 |
19\8
1200 |
31\13
1200 |
12\5
1200 |
29\12
1200 |
17\7
1200 |
22\9
1200 |
E# | 7# | 8# | 27\11
1246; 6,5 |
20\8
1263; 6.3 |
33\13
1277; 2, 2.6 |
13\5
1300 |
32\12
1324; 7.25 |
19\7
1341; 5.6 |
25\9
1363.63 |
Ff | 8b, Fd | 9f | 29\11
1338; 3.25 |
21\8
1326; 3.16̄ |
34\13
1316; 7.75 |
31\12
1282; 1.318 |
18\7
1270; 1.7 |
23\9
1254.54 | |
F | 8, F | 9 | 30\11
1384; 1.625 |
22\8
1389; 2.1̄ |
36\13
1393; 1, 1, 4.6 |
14\5
1400 |
34\12
1406; 1, 8.6 |
20\7
1411; 1, 3.25 |
26\9
1418.18 |
F# | 8#, F# | 9# | 31\11
1430; 1.3 |
23\8
1452; 1.583 |
38\13
1470; 1.03 |
15\5
1500 |
37\12
1531; 29 |
22\7
1552; 1.0625 |
29\9
1581.81 |
Gf | 9b, Gd | Af | 32\11
1476; 1.083 |
37\13
1432: 3.875 |
14\5
1400 |
33\12
1365; 1.93 |
19\7
1341; 5.3 |
24\9
1309.09 | |
G | 9, G | A | 33\11
1523; 13 |
24\8
1515; 1.26 |
39\13
1509; 1, 2.1 |
15\5
1500 |
36\12
1489; 1, 1.9 |
21\7
1482; 2.83 |
27\9
1472.72 |
G# | 9#, G# | A# | 34\11
1569; 4.3 |
25\8
1578; 1.05̄ |
41\13
1587; 10.3 |
16\5
1600 |
39\12
1613; 1, 3.83 |
23\7
1623; 1.8 |
30\9
1636.36 |
Jf, Af | Xb, Ad | Bf | 36\11
1661; 1, 1.16 |
26\8
1642; 9.5 |
42\13
1625; 1.24 |
38\12
1572; 29 |
22\7
1552; 1.0625 |
28\9
1527.27 | |
J, A | X, A | B | 37\11
1707; 1.4 |
27\8
1705; 3.8 |
44\13
1703; 4, 2.3̄ |
17\5
1700 |
41\12
1696; 1.8125 |
24\7
1694; 8.5 |
31\9
1690.90 |
J#, A# | X#, A# | B# | 38\11
1753; 1.18 |
28\8
1768; 2.375 |
46\13
1780; 1.55 |
18\5
1800 |
44\12
1820; 1.45 |
26\7
1835; 3,4 |
34\9
1854.54 |
Af, Bf | Eb, Bd | Cf | 40\11
1846; 6.5 |
29\8
1831; 1.72 |
47\13
1819; 2.81 |
43\12
1779; 3.2 |
25\7
1764; 1, 3.25 |
32\9
1745.45 | |
A, B | E, B | C | 41\11
1892; 3.25 |
30\8
1894; 1, 2.8 |
49\13
1896; 1.2916 |
19\5
1900 |
46\12
1903; 2, 2.16 |
27\7
1905; 1, 7.5 |
35\9
1909.09 |
A#, B# | E#, B# | C# | 42\11
1938; 2.16 |
31\8
1957; 1, 8.5 |
51\13
1974; 5.16 |
20\5
2000 |
49\12
2027; 1, 1.416 |
29\7
2047; 17 |
38\9
2072.72 |
Bb, Cf | 0b, Dd | Df | 43\15
1984; 1.625 |
50\13
1935; 2.06 |
19\5
1900 |
45\12
1862; 14.5 |
26\7
1835; 3,4 |
33\9
1800 | |
B, C | 0, D | D | 44\11
2030; 1.3 |
32\8
2021; 19 |
52\13
2012; 1, 9.3 |
20\5
2000 |
48\12
1986; 4.83 |
28\7
1976; 2.125 |
36\9
1963.63 |
B#, C# | 0#, D# | D# | 45\11
2076; 1.083 |
33\8
2084; 4.75 |
54\13
2090; 3.1 |
21\5
2100 |
51\12
2110; 2.9 |
30\7
2117; 1.54 |
39\9
2127.27 |
Cf, Qf | 1b, 1d | Ef | 47\11
2169; 4.3 |
34\8
2147; 2, 1.4 |
55\13
2129; 31 |
50\12
2068; 1, 28 |
29\7
2047; 17 |
37\9
2018.18 | |
C, Q | 1 | E | 48\11
2215; 2.6 |
35\8
2210; 1.9 |
57\13
2206; 2, 4.6 |
22\5
2200 |
53\12
2193; 9.6 |
31\7
2188; 4.25 |
40\9
2181.81 |
C#, Q# | 1# | E# | 49\11
2261; 1, 1.16 |
36\8
2273; 1, 2.16 |
59\13
2083; 1.148 |
23\5
2300 |
56\12
2327; 4, 7 |
33\7
2329; 2, 2.3 |
43\9
2345.45 |
Qf, Df | 2b, 2d | Ff | 51\11
2353; 1.18 |
37\8
2336; 1.1875 |
61\13
2322; 1.72 |
55\12
2275; 1.16 |
32\7
2258; 1, 4.6 |
41\9
2236.36 | |
Q, D | 2 | F | 52\11
2400 |
38\8
2400 |
62\13
2400 |
24\5
2400 |
58\12
2400 |
34\7
2400 |
44\9
2400 |
Q#, D# | 2# | F# | 53\11
2446; 6.5 |
39\8
2463; 6.3 |
64\13
2477; 2, 2.6 |
25\5
2500 |
61\12
2524; 7.25 |
36\7
2541; 5.6 |
47/9
2563.63 |
Df, Sf | 3b, 3d | 1f | 54\11
2492; 3.25 |
63\13
2438; 1.136 |
24\5
2400 |
57\12
2358; 1.61̄ |
33\7
2329; 2, 2.3 |
42\9
2390.90 | |
D, S | 3 | 1 | 55\11
2538; 2.16 |
40\8
2526; 3.16 |
65\13
2516; 7.75 |
25\5
2500 |
60\12
2482; 1.318 |
35\7
2470; 1.7 |
45\9
2454.54 |
Intervals
Generators | Fourth notation | Interval category name | Generators | Notation of 4/3 inverse | Interval category name |
---|---|---|---|---|---|
The 3-note MOS has the following intervals (from some root): | |||||
0 | Do, Sol | perfect unison | 0 | Do, Sol | perfect fourth |
1 | Mib, Sib | diminished third | -1 | Re, La | perfect second |
2 | Reb, Lab | diminished second | -2 | Mi, Si | perfect third |
The chromatic 5-note MOS also has the following intervals (from some root): | |||||
3 | Dob, Solb | diminished fourth | -3 | Do#, Sol# | augmented unison (chroma) |
4 | Mibb, Sibb | doubly diminished third | -4 | Re#, La# | augmented second |
Genchain
The generator chain for this scale is as follows:
Mibb
Sibb |
Dob
Solb |
Reb
Lab |
Mib
Sib |
Do
Sol |
Re
La |
Mi
Si |
Do#
Sol# |
Re#
La# |
Mi#
Si# |
dd3 | d4 | d2 | d3 | P1 | P2 | P3 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fourth:
Mode | Scale | UDP | Interval type | |
---|---|---|---|---|
name | pattern | notation | 2nd | 3rd |
Major | LLs | 2|0 | P | P |
Minor | LsL | 1|1 | P | d |
Phrygian | LsLL | 0|2 | d | d |
Temperaments
The most basic rank-2 temperament interpretation of diatonic is Mahuric. The name "Mahuric" comes from the “Mahur” scale in Persian and Arabic music. The major triad is spelled root-2g-(p+g)
(p = 4/3, g = the whole tone) and approximates 4:5:6 in pental interpretations or 14:18:21 in septimal ones. Basic ~5ed4/3 fits both interpretations.
Mahuric-Meantone
Subgroup: 4/3.5/4.3/2
POL2 generator: ~9/8 = 193.6725¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 8ed4/3, 13ed4/3)
Mahuric-Superpyth
Subgroup: 4/3.9/7.3/2
POL2 generator: ~8/7 = 216.7325¢
Mapping: [⟨1 0 1], ⟨0 2 1]]
Optimal ET sequence: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3)
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents[1] | L | s | L/s | Comments | ||
---|---|---|---|---|---|---|---|
1\3 | 171; 2.3 | 1 | 1 | 1.000 | Equalised | ||
6\17 | 180 | 6 | 5 | 1.200 | |||
11\31 | 180; 1.216 | 11 | 9 | 1.222 | |||
5\14 | 181.81 | 5 | 4 | 1.250 | |||
14\39 | 182; 1, 1.5 | 14 | 11 | 1.273 | |||
9\25 | 183; 19.6 | 9 | 7 | 1.286 | |||
4\11 | 184; 1.625 | 4 | 3 | 1.333 | |||
15\41 | 185; 1.763 | 15 | 11 | 1.364 | |||
11\30 | 185, 1, 10.83 | 11 | 8 | 1.375 | |||
7\19 | 186.6 | 7 | 5 | 1.400 | |||
10\27 | 187.5 | 10 | 7 | 1.429 | |||
13\35 | 187; 1, 19.75 | 13 | 9 | 1.444 | |||
16\43 | 188; 4.25 | 16 | 11 | 1.4545 | |||
3\8 | 189; 2.1 | 3 | 2 | 1.500 | Mahuric-Meantone starts here | ||
14\37 | 190.90 | 14 | 9 | 1.556 | |||
11\29 | 191; 3, 2.3 | 11 | 7 | 1.571 | |||
8\21 | 192 | 8 | 5 | 1.600 | |||
5\13 | 193; 1, 1, 4.6 | 5 | 3 | 1.667 | |||
12\31 | 194.594 | 12 | 7 | 1.714 | |||
7\18 | 195; 2.86 | 7 | 4 | 1.750 | |||
9\23 | 196.36 | 9 | 5 | 1.800 | |||
11\28 | 197; 67 | 11 | 6 | 1.833 | |||
13\33 | 197; 2.135 | 13 | 7 | 1.857 | |||
15\38 | 197; 1, 2, 1, 1.54 | 15 | 8 | 1.875 | |||
17\43 | 198; 17.16 | 17 | 9 | 1.889 | |||
19\48 | 198: 3, 1, 28 | 19 | 10 | 1.900 | |||
21\53 | 198; 2.3518 | 21 | 11 | 1.909 | |||
23\58 | 198; 1, 3, 1.7 | 23 | 12 | 1.917 | |||
25\63 | 198; 1, 2, 12.25 | 25 | 13 | 1.923 | |||
27\68 | 198; 1, 3.405 | 27 | 14 | 1.929 | |||
29\73 | 198; 1, 1.16 | 29 | 15 | 1.933 | |||
31\78 | 198; 1, 12, 2.8 | 31 | 16 | 1.9375 | |||
33\83 | 198; 1.005 | 33 | 17 | 1.941 | |||
35\88 | 199; 19.18 | 35 | 18 | 1.944 | |||
2\5 | 200 | 2 | 1 | 2.000 | Mahuric-Meantone ends, Mahuric-Pythagorean begins | ||
17\42 | 201.9801 | 17 | 8 | 2.125 | |||
15\37 | 202; 4.045 | 15 | 7 | 2.143 | |||
13\32 | 202; 1, 1, 2.06 | 13 | 6 | 2.167 | |||
11\27 | 203; 13 | 11 | 5 | 2.200 | |||
9\22 | 203; 1, 3.416 | 9 | 4 | 2.250 | |||
7\17 | 204; 1. 7.2 | 7 | 3 | 2.333 | |||
12\29 | 205; 1.4 | 12 | 5 | 2.400 | |||
5\12 | 206; 1, 8.6 | 5 | 2 | 2.500 | Mahuric-Neogothic heartland is from here… | ||
18\43 | 207; 1.4 | 18 | 7 | 2.571 | |||
13\31 | 208 | 13 | 5 | 2.600 | |||
8\19 | 208; 1.4375 | 8 | 3 | 2.667 | …to here | ||
11\26 | 209; 1.90 | 11 | 4 | 2.750 | |||
14\33 | 210 | 14 | 5 | 2.800 | |||
3\7 | 211; 1, 3.25 | 3 | 1 | 3.000 | Mahuric-Pythagorean ends, Mahuric-Superpyth begins | ||
22\51 | 212; 1, 9.3 | 22 | 7 | 3.143 | |||
19\44 | 213; 11.8 | 19 | 6 | 3.167 | |||
16\37 | 213.3̄ | 16 | 5 | 3.200 | |||
13\30 | 213; 1, 2.318 | 13 | 4 | 3.250 | |||
10\23 | 214; 3.5 | 10 | 3 | 3.333 | |||
7\16 | 215; 2.6 | 7 | 2 | 3.500 | |||
11\25 | 216; 2.5416 | 11 | 3 | 3.667 | |||
15\34 | 216; 1.1527 | 15 | 4 | 3.750 | |||
19\43 | 217; 7 | 19 | 5 | 3.800 | |||
4\9 | 218.18 | 4 | 1 | 4.000 | |||
13\29 | 219; 1, 2.55 | 13 | 3 | 4.333 | |||
9\20 | 220; 2.45 | 9 | 2 | 4.500 | |||
14\31 | 221; 19 | 14 | 3 | 4.667 | |||
5\11 | 222.2 | 5 | 1 | 5.000 | Mahuric-Superpyth ends | ||
11\24 | 223; 1, 2.6875 | 11 | 2 | 5.500 | |||
17\37 | 224; 5.72 | 17 | 3 | 5.667 | |||
6\13 | 225 | 6 | 1 | 6.000 | |||
1\3 | 240 | 1 | 0 | → inf | Paucitonic |
See also
2L 1s (4/3-equivalent) - idealized tuning
4L 2s (7/4-equivalent) - Mixolydian Archytas temperament
4L 2s (39/22-equivalent) - Mixolydian Neogothic temperament
4L 2s (9/5-equivalent) - Mixolydian Meantone temperament
6L 3s (7/3-equivalent) - Mahuric-Archytas temperament
6L 3s (26/11-equivalent) - Mahuric-Neogothic temperament
6L 3s (12/5-equivalent) - Mahuric-Meantone temperament
8L 4s (28/9-equivalent) - Bijou Archytas temperament
8L 4s (22/7-equivalent) - Bijou Neogothic temperament
8L 4s (16/5-equivalent) - Bijou Meantone temperament
10L 5s (112/27-equivalent) - Hyperionic Archytas temperament
10L 5s (88/21-equivalent) - Hyperionic Neogothic temperament
10L 5s (30/7-equivalent) - Hyperionic Meantone temperament