User:Moremajorthanmajor/7L 2s (major tenth-equivalent): Difference between revisions
m Moremajorthanmajor moved page User:7L 2s (5/2-equivalent) to User:Moremajorthanmajor/7L 2s (5/2-equivalent) |
No edit summary |
||
Line 1: | Line 1: | ||
This page is about | This page is about a [[MOSScales|MOSScale]] with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL). | ||
{{Infobox MOS|Equave=5/2|Pattern=LLLsLLLLs|nLargeSteps=7|nSmallSteps=2|Collapsed=4|Equalized=5}} | {{Infobox MOS|Equave=5/2|Pattern=LLLsLLLLs|nLargeSteps=7|nSmallSteps=2|Collapsed=4|Equalized=5}} |
Revision as of 20:43, 15 May 2023
This page is about a MOSScale with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).
Lua error in Module:MOS at line 46: attempt to index local 'equave' (a nil value).
Name
The name superdiatonic has been established by Armodue theorists, and so TAMNAMS adopts it as well.
Temperaments
If you're looking for highly accurate scales (that is, ones that approximate gamelan closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 688 cents is an acceptable ‘25/17' to you), then the harmonic entropy minimum of Terra Rubra is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Terra Rubra Superdiatonic" or simply 'Superdiatonic'.
Scale tree
Generator | Generator size (normalized) | Generator size (ed16\12 [→ed4\3]) | Pentachord steps | Comments | ||
---|---|---|---|---|---|---|
4\7 | 960 | 914.285… | 1 1|1 0 | |||
25\44 | 937.5 | 909.09 | 6 6|6 1 | |||
71\125 | 936.263… | 908.8 | 17 17|17 3 | |||
46\81 | 935.593… | 908.641… | 11 11|11 2 | |||
67\118 | 934.883… | 908.474… | 16 16|16 3 | |||
21\37 | 933.3 | 908.108 | 5 5|5 1 | |||
80\141 | 932.038… | 907.801… | 19 19|19 4 | |||
59\104 | 931.579… | 907.692… | 14 14|14 3 | |||
38\67 | 930.612… | 907.462… | 9 9|9 2 | |||
55\97 | 929.577… | 907.216… | 13 13|13 3 | |||
72\127 | 929.032… | 907.086… | 17 17|17 4 | |||
89\157 | 928.695… | 907.006… | 21 21|21 5 | |||
17\30 | 927.27 | 906.6 | 4 4|4 1 | L/s = 4 | ||
115\203 | 926.174… | 906.403… | 27 27|27 7 | |||
98\173 | 925.984… | 906.358… | 23 23|23 6 | |||
81\143 | 925.714… | 906.293… | 19 19|19 5 | |||
64\113 | 925.301… | 906.194… | 15 15|15 4 | |||
47\83 | 924.591… | 906.024… | 11 11|11 3 | |||
30\53 | 923.076… | 905.660… | 7 7|7 2 | |||
73\129 | 922.105… | 905.426… | 17 17|17 5 | |||
43\76 | 921.428… | 905.263… | 10 10|10 3 | |||
56\99 | 920.547… | 905.05 | 13 13|13 4 | |||
69\122 | 920 | 904.918… | 16 16|16 5 | |||
82\145 | 919.626… | 904.827… | 19 19|19 6 | |||
95\168 | 919.354… | 904.761… | 22 22|22 7 | |||
919.340… | 904.758… | π π|π 1 | L/s = π | |||
108\191 | 919.148… | 904.712… | 25 25|25 8 | |||
121\214 | 918.987… | 904.672… | 28 28|28 9 | 28;9 Superdiatonic 1/28-tone | ||
134\237 | 918.857… | 904.642… | 31 31|31 10 | |||
13\23 | 917.647… | 904.347… | 3 3|3 1 | Terra Rubra 1/3-tone | ||
126\223 | 916.36 | 904.035… | 29 29|29 10 | Terra Rubra 1/29-tone | ||
113\200 | 916.216 | 904 | 26 26|26 9 | Terra Rubra 1/26-tone | ||
100\177 | 916.030… | 903.954… | 23 23|23 8 | |||
87\154 | 915.789… | 903.896… | 20 20|20 7 | |||
74\131 | 915.463… | 903.816… | 17 17|17 6 | Terra Rubra 1/17-tone | ||
61\108 | 915 | 903.703 | 14 14|14 5 | Terra Rubra 1/14-tone | ||
109\193 | 914.685… | 903.626… | 25 25|25 9 | Terra Rubra 1/25-tone | ||
48\85 | 914.286… | 903.529… | 11 11|11 4 | Terra Rubra 1/11-tone | ||
913.820… | 903.415… | e e|e 1 | L/s = e | |||
35\62 | 913.043… | 903.225… | 8 8|8 3 | Terra Rubra 1/8-tone | ||
92\163 | 912.396… | 903.067… | 21 21|21 8 | 21;8 Superdiatonic 1/21-tone | ||
912.286… | 903.040… | φ+1 φ+1|φ+1 1 | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | |||
57\101 | 912 | 902.970… | 13 13|13 5 | 13;5 Superdiatonic 1/13-tone | ||
79\140 | 911.538… | 902.857… | 18 18|18 7 | |||
22\39 | 910.344… | 902.564… | 5 5|5 2 | Terra Rubra 1/5-tone | ||
75\133 | 909.09 | 902.255… | 17 17|17 7 | 17;7 Superdiatonic 1/17-tone | ||
53\94 | 908.571… | 902.127… | 12 12|12 5 | |||
31\55 | 907.317… | 901.81 | 7 7|7 3 | 7;3 Superdiatonic 1/7-tone | ||
71\126 | 906.382… | 901.587… | 16 16|16 7 | |||
40\71 | 905.660… | 901.408… | 9 9|9 4 | 9;4 Superdiatonic 1/9-tone | ||
49\87 | 904.615… | 901.149… | 11 11|11 5 | 11;5 Superdiatonic 1/11-tone | ||
58\103 | 903.896… | 900.970… | 13 13|13 6 | 13;6 Superdiatonic 1/13-tone | ||
67\119 | 903.370… | 900.840… | 15 15|15 7 | |||
76\135 | 902.970… | 900.740 | 17 17|17 7 | |||
85\151 | 902.654… | 900.662… | 19 19|19 9 | |||
94\167 | 902.4 | 900.598… | 21 21|21 10 | |||
103\183 | 902.189… | 900.564… | 23 23|23 11 | |||
112\199 | 902.013… | 900.502… | 25 25|25 12 | |||
121\215 | 901.863… | 900.465… | 27 27|27 13 | |||
9\16 | 900 | 900 | 2 2|2 1 | [BOUNDARY OF PROPRIETY: smaller generators are strictly proper] | ||
230\409 | 899.022… | 899.755… | 51 51|51 26 | |||
221\393 | 898.983… | 899.745… | 49 49|49 25 | |||
212\377 | 898.939… | 899.734… | 47 47|47 24 | |||
203\361 | 898.892… | 899.722… | 45 45|45 23 | |||
194\345 | 898.841… | 899.710… | 43 43|43 22 | |||
185\329 | 898.785… | 899.696… | 41 41|41 21 | |||
176\313 | 898.723… | 899.680… | 39 39|39 20 | |||
167\297 | 898.654… | 899.663… | 37 37|37 19 | |||
158\281 | 898.578… | 899.644… | 35 35|35 18 | |||
149\265 | 898.492… | 899.622… | 33 33|33 17 | |||
140\249 | 898.395… | 899.598… | 31 31|31 16 | |||
131\233 | 898.285… | 899.570… | 29 29|29 15 | |||
122\217 | 898.159… | 899.539… | 27 27|27 14 | |||
113\201 | 898.013… | 899.502… | 25 25|25 13 | |||
104\185 | 897.841… | 899.459… | 23 23|23 12 | |||
95\169 | 897.637… | 899.408… | 21 21|21 11 | |||
86\153 | 897.391… | 899.346… | 19 19|19 10 | |||
77\137 | 897.087… | 899.270… | 17 17|17 9 | |||
68\121 | 896.703… | 899.173… | 15 15|15 8 | |||
59\105 | 896.202… | 899.047… | 13 13|13 7 | Terra Rubra 1/13-tone | ||
50\89 | 895.522… | 898.876… | 11 11|11 6 | Terra Rubra 1/11-tone | ||
41\73 | 894.54 | 898.630… | 9 9|9 5 | Terra Rubra 1/9-tone | ||
32\57 | 893.023… | 898.245… | 7 7|7 4 | Terra Rubra 1/7-tone (the 'Commatic' version of Terra Rubra, because its high accuracy of the 16/15 interval, the note '2b') | ||
892.459… | 898.102… | √3 √3|√3 1 | ||||
55\98 | 891.891 | 897.959… | 12 12|12 7 | |||
78\139 | 891.428… | 897.841… | 17 17|17 10 | Terra Rubra 1/17-tone | ||
23\41 | 890.323… | 897.560… | 5 5|5 3 | 5;3 Golden Terra Rubra 1/5-tone | ||
83\148 | 889.285… | 897.297 | 18 18|18 11 | |||
60\107 | 888.8 | 897.196… | 13 13|13 8 | 13;8 Golden Terra Rubra 1/13-tone | ||
888.643… | 897.133… | φ φ|φ 1 | GOLDEN Terra Rubra (L/s = φ) | |||
97\173 | 888.549… | 897.109… | 21 21|21 13 | 21;13 Golden Terra Rubra 1/21-tone | ||
37\66 | 888 | 896.96 | 8 8|8 5 | 8;5 Golden Terra Rubra 1/8-tone | ||
88\157 | 887.394… | 896.815… | 19 19|19 12 | |||
51\91 | 886.956… | 896.703… | 11 11|11 7 | 11;7 Superdiatonic 1/11-tone | ||
886.933… | 896.697… | π π|π 2 | ||||
116\207 | 886.624… | 896.618… | 25 25|25 16 | 25;16 Superdiatonic 1/25-tone | ||
65\116 | 886.36 | 896.551… | 14 14|14 9 | 14;9 Superdiatonic 1/14-tone | ||
79\141 | 885.981… | 896.453… | 17 17|17 11 | 17;11 Superdiatonic 1/17-tone | ||
93\166 | 885.714… | 896.385… | 20 20|20 13 | |||
107\191 | 885.517… | 896.335… | 23 23|23 15 | |||
121\216 | 885.365… | 896.296 | 26 26|26 17 | 26;17 Superdiatonic 1/26-tone | ||
135\241 | 885.245… | 896.265… | 29 29|29 19 | 29;19 Superdiatonic 1/29-tone | ||
14\25 | 884.210… | 896 | 3 3|3 2 | 3;2 Golden Terra Rubra 1/3-tone | ||
145\259 | 883.248… | 895.752… | 31 31|31 21 | 31;21 Superdiatonic 1/31-tone | ||
131\234 | 883.146… | 895.726… | 28 28|28 19 | 28;19 Superdiatonic 1/28-tone | ||
117\209 | 883.018… | 895.693… | 25 25|25 17 | |||
103\184 | 882.857… | 895.652… | 22 22|22 15 | |||
89\159 | 882.644… | 895.579… | 19 19|19 13 | |||
75\134 | 882.353… | 895.522… | 16 16|16 11 | |||
61\109 | 881.927… | 895.412… | 13 13|13 9 | |||
47\84 | 881.25 | 895.238… | 10 10|10 7 | |||
80\143 | 880.733… | 895.104… | 17 17|17 12 | |||
33\59 | 880 | 894.915… | 7 7|7 5 | |||
85\152 | 879.310… | 894.736… | 18 18|18 13 | |||
52\93 | 878.873… | 894.623… | 11 11|11 8 | |||
71\127 | 878.350… | 894.488… | 15 15|15 11 | |||
19\34 | 876.923… | 894.117… | 4 4|4 3 | |||
62\111 | 875.294… | 893.693 | 13 13|13 10 | |||
43\77 | 874.576… | 893.506… | 9 9|9 7 | |||
67\120 | 873.913… | 893.3 | 14 14|14 11 | |||
24\43 | 872.72 | 893.023… | 5 5|5 4 | |||
53\95 | 871.232… | 892.631… | 11 11|11 9 | |||
29\52 | 870 | 892.307… | 6 6|6 5 | |||
5\9 | 857.142… | 888.8 | 1 1|1 1 |