2901533edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Yourmusic Productions (talk | contribs)
m Extend prime harmonics table as far as the system will permit.
Godtone (talk | contribs)
No edit summary
Line 1: Line 1:
{{Infobox ET|Consistency=131|Distinct consistency=131}}
{{Infobox ET|Consistency=131|Distinct consistency=131}}
{{EDO intro|2901533}}
{{EDO intro|2901533}}
Except for 8 barely-inconsistent interval pairs, it is consistent in the 137-prime-limited no-247's 255-odd-limit (a total of 4067 interval pairs), with primes 151, 157, 163, 173, 181, 197 and 211 being includeable to that odd limit for a tiny penalty of only 3 more barely-inconsistent interval pairs (and for a total of 4830). Including odd 247 adds 8 more inconsistent interval pairs and 90 more consistent interval pairs for a total of 4928 interval pairs (of which 19 interval pairs are inconsistent).


== Theory ==
== Theory ==

Revision as of 01:48, 10 May 2023

← 2901532edo 2901533edo 2901534edo →
Prime factorization 433 × 6701
Step size 0.000413574 ¢ 
Fifth 1697288\2901533 (701.955 ¢)
Semitones (A1:m2) 274884:218159 (113.7 ¢ : 90.22 ¢)
Consistency limit 131
Distinct consistency limit 131

Template:EDO intro Except for 8 barely-inconsistent interval pairs, it is consistent in the 137-prime-limited no-247's 255-odd-limit (a total of 4067 interval pairs), with primes 151, 157, 163, 173, 181, 197 and 211 being includeable to that odd limit for a tiny penalty of only 3 more barely-inconsistent interval pairs (and for a total of 4830). Including odd 247 adds 8 more inconsistent interval pairs and 90 more consistent interval pairs for a total of 4928 interval pairs (of which 19 interval pairs are inconsistent).

Theory

Approximation of prime harmonics in 2901533edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000000 +0.000000 +0.000004 +0.000021 -0.000001 +0.000018 -0.000132 +0.000057 -0.000121 -0.000071 -0.000034
Relative (%) +0.0 +0.0 +0.9 +5.1 -0.3 +4.3 -32.0 +13.8 -29.3 -17.1 -8.3
Steps
(reduced)
2901533
(0)
4598821
(1697288)
6737151
(934085)
8145633
(2342567)
10037655
(1333056)
10736948
(2032349)
11859908
(253776)
12325502
(719370)
13125264
(1519132)
14095592
(2489460)
14374764
(2768632)
Approximation of prime harmonics in 2901533edo (continued)
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +0.000061 +0.000025 -0.000104 +0.000060 -0.000091 +0.000027 -0.000041 +0.000014 -0.000086 -0.000092 +0.000056
Relative (%) +14.8 +5.9 -25.3 +14.5 -22.0 +6.5 -9.9 +3.3 -20.9 -22.2 +13.4
Steps
(reduced)
15115401
(607736)
15545114
(1037449)
15744486
(1236821)
16116823
(1609158)
16619750
(2112085)
17068683
(2561018)
17208230
(2700565)
17600958
(191760)
17843694
(434496)
17959980
(550782)
18290628
(881430)
Approximation of prime harmonics in 2901533edo (continued)
Harmonic 83 89 97 101 103 107 109 113 127 131 137
Error Absolute (¢) -0.000118 -0.000103 +0.000038 -0.000140 +0.000027 +0.000029 -0.000070 -0.000135 -0.000101 +0.000024 -0.000134
Relative (%) -28.6 -24.9 +9.1 -33.8 +6.6 +7.1 -16.8 -32.5 -24.5 +5.8 -32.4
Steps
(reduced)
18497387
(1088189)
18789554
(1380356)
19149865
(1740667)
19319020
(1909822)
19401102
(1991904)
19560589
(2151391)
19638110
(2228912)
19788974
(2379776)
20277899
(2868701)
20407709
(96978)
20595174
(284443)