Module:Rational: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
 
(92 intermediate revisions by 6 users not shown)
Line 1: Line 1:
local u = require('Module:Utils')
local p = {}
local p = {}


-- construct a rational number n/m
local seq = require("Module:Sequence")
local utils = require("Module:Utils")
 
-- enter a numerator n and denominator m
-- returns a table of prime factors
-- similar to a monzo, but the indices are prime numbers.
function p.new(n, m)
function p.new(n, m)
m = m or 1
m = m or 1
if n == 0 then
if n == 0 and m == 0 then
if m == 0 then
return { nan = true }
return { nan = true }
elseif n == 0 then
else
return { zero = true, sign = utils.signum(m) }
return { zero = true, sign = u.signum(m) }
elseif m == 0 then
end
return { inf = true, sign = utils.signum(n) }
else
if m == 0 then
return { inf = true, sign = u.signum(n) }
end
end
end
local sign = u.signum(n) * u.signum(m)
local sign = utils.signum(n) * utils.signum(m)
n = n * u.signum(n)
-- ensure n and m are positive
m = m * u.signum(m)
n = n * utils.signum(n)
local n_factors = u.prime_factorization_raw(n)
m = m * utils.signum(m)
local m_factors = u.prime_factorization_raw(m)
-- factorize n and m separately
local n_factors = utils.prime_factorization_raw(n)
local m_factors = utils.prime_factorization_raw(m)
local factors = n_factors
local factors = n_factors
factors.sign = sign
factors.sign = sign
-- subtract the factors of m from the factors of n
for factor, power in pairs(m_factors) do
for factor, power in pairs(m_factors) do
factors[factor] = factors[factor] or 0
factors[factor] = factors[factor] or 0
factors[factor] = factors[factor] - power
factors[factor] = factors[factor] - power
if factors[factor] == 0 then
if factors[factor] == 0 then
factors[factor] = nil
factors[factor] = nil -- clear the zeros
end
end
end
end
Line 33: Line 36:
end
end


-- copy a rational number
function p.copy(a)
function p.copy(a)
b = {}
local b = {}
for factor, power in pairs(a) do
for factor, power in pairs(a) do
b[factor] = power
b[factor] = power
end
end
return b
return b
end
-- create a rational number from continued fraction array
function p.from_continued_fraction(data)
local val = p.new(1, 0)
for i = #data, 1, -1 do
val = p.add(data[i], p.inv(val))
end
return val
end
-- create a rational number from a string of whitespace-separated integers
function p.from_ket(s)
local factor = 1
local a = { sign = 1 }
for i in s:gmatch("%S+") do
local power = tonumber(i)
if power == nil then
return nil
end
-- find the next prime
factor = factor + 1
while not utils.is_prime(factor) do
factor = factor + 1
end
if power ~= 0 then
a[factor] = power
end
end
return a
end
-- list convergents to `x` with a given stop condition
-- `stop` is either a number or a function of rational numbers
function p.convergents(x, stop)
local convergents = {}
local data = {}
local i = 0
while true do
local n = math.floor(x)
table.insert(data, n)
local frac = p.from_continued_fraction(data)
if type(stop) == "function" and stop(frac) then
break
elseif type(stop) == "number" and i >= stop then
break
end
table.insert(convergents, frac)
x = x - n
if x == 0 then
break
end
x = 1 / x
i = i + 1
end
return convergents
end
-- determine whether a rational number is a convergent or a semiconvergent to `x`
-- TODO: document how this works
function p.converges(a, x)
local _, m_a = p.as_pair(a)
local convergents = p.convergents(x, function(b)
local _, m_b = p.as_pair(b)
return m_b >= m_a * 10000
end)
for _, b in ipairs(convergents) do
if p.eq(a, b) then
return "convergent"
end
end
for i = 2, #convergents - 1 do
local n_delta, m_delta = p.as_pair(convergents[i])
local n_c, m_c = p.as_pair(convergents[i - 1])
while true do
n_c = n_c + n_delta
m_c = m_c + m_delta
local c = p.new(n_c, m_c)
if p.as_table(c)[2] >= p.as_table(convergents[i + 1])[2] then
break
end
if p.eq(a, c) then
return "semiconvergent"
end
end
end
return false
end
-- attempt to identify the ratio as a simple S-expression
-- returns a table of matched expressions
function p.find_S_expression(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero or a.sign < 0 then
return {}
end
if p.eq(a, 1) then
return {}
end
local max_prime = p.max_prime(a)
if seq.square_superparticulars[max_prime] == nil then
return {}
end
local expressions = {}
local superparticular_indices = {}
local superparticular_ratios = {}
for _, k_array in pairs(seq.square_superparticulars) do
for _, k in ipairs(k_array) do
if k <= 1000 then
table.insert(superparticular_indices, k)
local Sk_num = p.pow(p.new(k), 2)
local Sk_den = p.mul(k - 1, k + 1)
local Sk = p.div(Sk_num, Sk_den)
superparticular_ratios[k] = Sk
end
end
end
-- is it Sk?
for _, k in ipairs(superparticular_indices) do
if p.eq(a, superparticular_ratios[k]) then
table.insert(expressions, "S" .. k)
end
end
-- is it Sk*S(k+1) or Sk/S(k+1) or Sk^2*S(k+1) or Sk*S(k+1)^2?
for _, k in ipairs(superparticular_indices) do
local r1 = superparticular_ratios[k]
local r2 = superparticular_ratios[k + 1]
if r1 and r2 then
if p.eq(a, p.mul(r1, r2)) then
table.insert(expressions, "S" .. k .. " × S" .. (k + 1))
end
if p.eq(a, p.div(r1, r2)) then
table.insert(expressions, "S" .. k .. " / S" .. (k + 1))
end
if p.eq(a, p.mul(p.pow(r1, 2), r2)) then
table.insert(expressions, "S" .. k .. "<sup>2</sup> × S" .. (k + 1))
end
if p.eq(a, p.mul(r1, p.pow(r2, 2))) then
table.insert(expressions, "S" .. k .. " * S" .. (k + 1) .. "<sup>2</sup>")
end
end
end
-- is it Sk/S(k+2)?
for _, k in ipairs(superparticular_indices) do
local r1 = superparticular_ratios[k]
local r2 = superparticular_ratios[k + 2]
if r1 and r2 then
if p.eq(a, p.div(r1, r2)) then
table.insert(expressions, "S" .. k .. " / S" .. (k + 2))
end
end
end
-- is it S(k-1)*Sk*S(k+1)?
for _, k in ipairs(superparticular_indices) do
local r1 = superparticular_ratios[k - 1]
local r2 = superparticular_ratios[k]
local r3 = superparticular_ratios[k + 1]
if r1 and r2 and r3 then
if p.eq(a, p.mul(r1, p.mul(r2, r3))) then
table.insert(expressions, "S" .. (k - 1) .. " × S" .. k .. " × S" .. (k + 1))
end
end
end
return expressions
end
end


-- multiply two rational numbers; integers are also allowed
-- multiply two rational numbers; integers are also allowed
function p.mul(a, b)
function p.mul(a, b)
if type(a) == 'number' then
if type(a) == "number" then
a = p.new(a)
a = p.new(a)
end
end
if type(b) == 'number' then
if type(b) == "number" then
b = p.new(b)
b = p.new(b)
end
end
Line 65: Line 244:
return { zero = true, sign = a.sign * b.sign }
return { zero = true, sign = a.sign * b.sign }
end
end
-- the regular case: both not NaN, not infinities, not zeros
-- regular case: both not NaN, not infinities, not zeros
local c = p.copy(a)
local c = p.copy(a)
for factor, power in pairs(b) do
for factor, power in pairs(b) do
if type(factor) == 'number' then
if type(factor) == "number" then
c[factor] = c[factor] or 0
c[factor] = c[factor] or 0
c[factor] = c[factor] + power
c[factor] = c[factor] + power
Line 82: Line 261:
-- compute 1/a for a rational number a; integers are also allowed
-- compute 1/a for a rational number a; integers are also allowed
function p.inv(a)
function p.inv(a)
if type(a) == 'number' then
if type(a) == "number" then
a = p.new(a)
a = p.new(a)
end
end
Line 97: Line 276:
return { inf = true, sign = a.sign }
return { inf = true, sign = a.sign }
end
end
-- the regular case: not NaN, not infinity, not zero
-- regular case: not NaN, not infinity, not zero
b = {}
local b = {}
for factor, power in pairs(a) do
for factor, power in pairs(a) do
if type(factor) == 'number' then
if type(factor) == "number" then
b[factor] = -power
b[factor] = -power
end
end
Line 111: Line 290:
function p.div(a, b)
function p.div(a, b)
return p.mul(a, p.inv(b))
return p.mul(a, p.inv(b))
end
-- compute a^b; b must be an integer
function p.pow(a, b)
if type(a) == "number" then
a = p.new(a)
end
if type(b) ~= "number" then
return nil
end
if a.nan then
return { nan = true }
end
if a.inf then
if b == 0 then
return { nan = true }
elseif b > 0 then
return { inf = true, sign = math.pow(a.sign, b) }
else
return { zero = true, sign = math.pow(a.sign, b) }
end
end
if a.zero then
if b == 0 then
return p.new(1)
elseif b > 0 then
return { zero = true, sign = math.pow(a.sign, b) }
else
return { inf = true, sign = math.pow(a.sign, b) }
end
end
local c = p.new(1)
for _ = 1, math.abs(b) do
if b > 0 then
c = p.mul(c, a)
else
c = p.div(c, a)
end
end
return c
end
-- compute a canonical representation of `a` modulo powers of `b`
-- TODO: describe the exact behavior
--      it seems bugged when the equave is a fraction
function p.modulo_mul(a, b)
if type(a) == "number" then
a = p.new(a)
end
if type(b) == "number" then
b = p.new(b)
end
if a.nan or b.nan or a.inf or b.inf or a.zero or b.zero then
return p.copy(a)
end
local neg_power = -math.huge
local pos_power = math.huge
for factor, power in pairs(b) do
if type(factor) == "number" then
if (power > 0 and (a[factor] or 0) >= 0) or (power < 0 and (a[factor] or 0) <= 0) then
pos_power = math.min(pos_power, math.floor((a[factor] or 0) / power))
else
neg_power = math.max(neg_power, -math.ceil(math.abs(a[factor] or 0) / math.abs(power)))
end
end
end
local power = 0
if neg_power ~= neg_power + 1 and neg_power < 0 then
power = neg_power
end
if pos_power ~= pos_power + 1 and pos_power > 0 then
power = pos_power
end
return p.div(a, p.pow(b, power))
end
end


-- add two rational numbers; integers are also allowed
-- add two rational numbers; integers are also allowed
function p.add(a, b)
function p.add(a, b)
if type(a) == 'number' then
if type(a) == "number" then
a = p.new(a)
a = p.new(a)
end
end
if type(b) == 'number' then
if type(b) == "number" then
b = p.new(b)
b = p.new(b)
end
end
 
-- special case: NaN
-- special case: NaN
if a.nan or b.nan then
if a.nan or b.nan then
Line 140: Line 393:
return { inf = true, sign = b.sign }
return { inf = true, sign = b.sign }
end
end
-- regular case: both not NaN, not infinities
-- special case: one is zero
if a.zero then
n_a, m_a = p.as_pair(a)
return p.copy(b)
n_b, m_b = p.as_pair(b)
end
if b.zero then
n = n_a * m_b + n_b * m_a
return p.copy(a)
m = m_a * m_b
end
-- regular case: both not NaN, not infinities, not zeros
return p.new(n, m)
local gcd = { sign = 1 }
for factor, power in pairs(a) do
if type(factor) == "number" then
if math.min(power, b[factor] or 0) > 0 then
gcd[factor] = math.min(power, b[factor])
end
if math.max(power, b[factor] or 0) < 0 then
gcd[factor] = math.max(power, b[factor])
end
end
end
a = p.div(a, gcd)
b = p.div(b, gcd)
 
local n_a, m_a = p.as_pair(a)
local n_b, m_b = p.as_pair(b)
 
local n = n_a * m_b + n_b * m_a
local m = m_a * m_b
 
return p.mul(p.new(n, m), gcd)
end
end


Line 154: Line 427:
function p.sub(a, b)
function p.sub(a, b)
return p.add(a, p.mul(b, -1))
return p.add(a, p.mul(b, -1))
end
-- absolute value of a rational number; integers are also allowed
function p.abs(a)
if a.nan then
return { nan = true }
end
local b = p.copy(a)
b.sign = 1
return b
end
end


Line 198: Line 481:
-- determine whether a rational number is equal to another; integers are also allowed
-- determine whether a rational number is equal to another; integers are also allowed
function p.eq(a, b)
function p.eq(a, b)
local c = p.sub(a, b)
if type(a) == "number" then
return c.zero
a = p.new(a)
end
if type(b) == "number" then
b = p.new(b)
end
if a.nan or b.nan then
return false
end
if a.inf and b.inf then
return a.sign == b.sign
end
if a.inf or b.inf then
return false
end
if a.zero and b.zero then
return true
end
if a.zero or b.zero then
return false
end
for factor, power in pairs(a) do
if b[factor] ~= power then
return false
end
end
for factor, power in pairs(b) do
if a[factor] ~= power then
return false
end
end
return true
end
end


-- determine whether a rational number is integer
-- determine whether a rational number is integer
function p.is_int(a)
function p.is_int(a)
if type(a) == 'number' then
if type(a) == "number" then
return true
return true
end
end
Line 214: Line 527:
end
end
for factor, power in pairs(a) do
for factor, power in pairs(a) do
if type(factor) == 'number' then
if type(factor) == "number" then
if power < 0 then
return false
end
end
end
return true
end
 
-- determine whether a rational number lies within [1; equave)
function p.is_reduced(a, equave, large)
equave = equave or 2
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero or a.sign < 0 then
return false
end
if large then
-- an approximation
local cents = p.cents(a)
local cents_max = p.cents(equave)
return cents >= 0 and cents < cents_max
else
return p.geq(a, 1) and p.lt(a, equave)
end
end
 
-- determine whether a rational number represents a harmonic.
-- reduced: check for reduced harmonic instead.
function p.is_harmonic(a, reduced, large)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero or a.sign < 0 then
return false
end
for factor, power in pairs(a) do
if type(factor) == "number" then
if factor == 2 and reduced then
-- pass (ignore factors of 2 for reduced harmonic check)
elseif power < 0 then
return false
end
end
end
if reduced then
return p.is_reduced(a, 2, large)
end
return true
end
 
-- determine whether a rational number represents a subharmonic.
-- reduced: check for reduced subharmonic instead.
function p.is_subharmonic(a, reduced, large)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero or a.sign < 0 then
return false
end
for factor, power in pairs(a) do
if type(factor) == "number" then
if factor == 2 and reduced then
-- pass (ignore factors of 2 for reduced subharmonic check)
elseif power > 0 then
return false
end
end
end
if reduced then
return p.is_reduced(a, 2, large)
end
return true
end
 
-- determine whether a rational number is an integer power of another rational number
function p.is_power(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return false
end
if p.eq(a, 1) or p.eq(a, -1) then
return false
end
 
local total_power = nil
for factor, power in pairs(a) do
if type(factor) == "number" then
if total_power then
total_power = utils._gcd(total_power, math.abs(power))
else
total_power = math.abs(power)
end
end
end
return total_power > 1
end
 
-- determine whether a rational number is superparticular
function p.is_superparticular(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return false
end
local n, m = p.as_pair(a)
return n - m == 1
end
 
-- determine whether a rational number is a square superparticular
function p.is_square_superparticular(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero or a.sign < 0 then
return false
end
-- check the numerator
local k = { sign = 1 }
for factor, power in pairs(a) do
if type(factor) == "number" then
if power > 0 and power % 2 ~= 0 then
return false
elseif power > 0 then
k[factor] = math.floor(power / 2 + 0.5)
end
end
end
-- check the denominator
local den = p.mul(p.add(k, 1), p.sub(k, 1))
return p.eq(a, p.div(p.pow(k, 2), den))
end
 
-- check if an integer is prime
function p.is_prime(a)
if type(a) == "number" then
a = p.new(a)
end
-- nan, inf, zero, and negative numbers are not prime
if a.nan or a.inf or a.zero or a.sign < 0 then
return false
end
local flag = false -- flag for having exactly one prime factor
for factor, power in pairs(a) do
if type(factor) == "number" and power then
if flag or power ~= 1 then
return false
else
flag = true
end
end
end
return flag
end
 
-- check if an integer is highly composite
function p.is_highly_composite(a)
if type(a) == "number" then
a = p.new(a)
end
-- nan, inf, zero, and negative numbers are not highly composite
if a.nan or a.inf or a.zero or a.sign == -1 then
return false
end
-- non-integers are not highly composite
for factor, power in pairs(a) do
if type(factor) == "number" then
if power < 0 then
return false
end
end
end
local last_power = 1 / 0
local max_prime = p.max_prime(a)
for i = 2, max_prime do
if utils.is_prime(i) then
-- factors must be the first N primes
if a[i] == nil then
return false
end
-- powers must form a non-increasing sequence
if a[i] > last_power then
return false
end
last_power = a[i]
end
end
-- last_power may be >1 only for 1, 4, 36
if last_power > 1 then
return p.eq(a, 1) or p.eq(a, 4) or p.eq(a, 36)
end
 
-- now we actually check whether it is highly composite
local n, _ = p.as_pair(a)
 
-- precision is very important here
local log2_n = 0
local t = 1
while t * 2 <= n do
log2_n = log2_n + 1
t = t * 2
end
 
local divisors = p.divisors(a)
local diagram_size = log2_n
local diagram = { log2_n }
local primes = { 2 }
 
local function eval_diagram(d)
while #d > #primes do
local i = primes[#primes] + 1
while not utils.is_prime(i) do
i = i + 1
end
table.insert(primes, i)
end
local m = 1
for i = 1, #d do
for _ = 1, d[i] do
m = m * primes[i]
end
end
return m
end
 
-- iterate factorisations of some composite integers <n
while diagram do
while eval_diagram(diagram) >= n do
-- reduce diagram size, preserve diagram width
if diagram_size <= #diagram then
diagram = nil
break
end
diagram_size = diagram_size - 1
diagram[1] = diagram_size - #diagram + 1
for i = 2, #diagram do
diagram[i] = 1
end
end
if diagram == nil then
break
end
local diagram_divisors = 1
for i = 1, #diagram do
diagram_divisors = diagram_divisors * (diagram[i] + 1)
end
if diagram_divisors >= divisors then
return false
end
diagram = utils.next_young_diagram(diagram)
end
return true
end
 
-- check if an integer is superabundant
function p.is_superabundant(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return false
end
-- negative numbers are not superabundant
if a.sign == -1 then
return false
end
-- non-integers are not superabundant
for factor, power in pairs(a) do
if type(factor) == "number" then
if power < 0 then
if power < 0 then
return false
return false
end
end
end
end
end
local last_power = 1 / 0
local max_prime = p.max_prime(a)
local divisor_sum = p.new(1)
for i = 2, max_prime do
if utils.is_prime(i) then
-- factors must be the first N primes
if a[i] == nil then
return false
end
-- powers must form a non-increasing sequence
if a[i] > last_power then
return false
end
last_power = a[i]
divisor_sum = p.mul(divisor_sum, p.div(p.sub(p.pow(i, a[i] + 1), 1), i - 1))
end
end
-- last_power may be >1 only for 1, 4, 36
if last_power > 1 then
return p.eq(a, 1) or p.eq(a, 4) or p.eq(a, 36)
end
-- now we actually check whether it is superabundant
local n, _ = p.as_pair(a)
-- precision is very important here
local log2_n = 0
local t = 1
while t * 2 <= n do
log2_n = log2_n + 1
t = t * 2
end
local SA_ratio = p.div(divisor_sum, a)
local diagram_size = log2_n
local diagram = { log2_n }
local primes = { 2 }
local function eval_diagram(d)
while #d > #primes do
local i = primes[#primes] + 1
while not utils.is_prime(i) do
i = i + 1
end
table.insert(primes, i)
end
local m = 1
for i = 1, #d do
for _ = 1, d[i] do
m = m * primes[i]
end
end
return m
end
-- iterate factorisations of some composite integers <n
while diagram do
while eval_diagram(diagram) >= n do
-- reduce diagram size, preserve diagram width
if diagram_size <= #diagram then
diagram = nil
break
end
diagram_size = diagram_size - 1
diagram[1] = diagram_size - #diagram + 1
for i = 2, #diagram do
diagram[i] = 1
end
end
if diagram == nil then
break
end
local diagram_divisor_sum = 1
for i = 1, #diagram do
diagram_divisor_sum =
p.mul(diagram_divisor_sum, p.div(p.sub(p.pow(primes[i], diagram[i] + 1), 1), primes[i] - 1))
end
local diagram_SA_ratio = p.div(diagram_divisor_sum, eval_diagram(diagram))
if p.geq(diagram_SA_ratio, SA_ratio) then
return false
end
diagram = utils.next_young_diagram(diagram)
end
end
return true
return true
end
end


-- return the (n, m) pair as a Lua tuple
-- Check if ratio is within an int limit; that is, neither its numerator nor
-- denominator exceed that limit.
function p.is_within_int_limit(a, lim)
return p.int_limit(a) <= lim
end
 
-- Find integer limit of a ratio
-- For a ratio p/q, this is simply max(p, q)
function p.int_limit(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return nil
end
local a_copy = p.copy(a)
local num, den = p.as_pair(a_copy)
return math.max(num, den)
end
 
-- Find odd limit of a ratio
-- For a ratio p/q, this is simply max(p, q) where powers of 2 are ignored
function p.odd_limit(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return nil
end
local a_copy = p.copy(a)
if a_copy[2] ~= nil then
a_copy[2] = 0
end
local num, den = p.as_pair(a_copy)
return math.max(num, den)
end
 
-- find max prime involved in the factorisation
-- (a.k.a. prime limit or harmonic class) of a rational number
function p.max_prime(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return nil
end
local max_factor = 0
for factor, _ in pairs(a) do
if type(factor) == "number" then
if factor > max_factor then
max_factor = factor
end
end
end
return max_factor
end
 
-- convert a rational number to its size in octaves
-- equal to log2 of the rational number
function p.log(a, base)
base = base or 2
if type(a) == "number" then
a = p.new(a)
end
if a.inf and a.sign > 0 then
return 1 / 0
end
if a.nan or a.inf then
return nil
end
if a.zero then
return -1 / 0
end
if a.sign < 0 then
return nil
end
local logarithm = 0
for factor, power in pairs(a) do
if type(factor) == "number" then
logarithm = logarithm + power * utils._log(factor, base)
end
end
return logarithm
end
 
-- convert a rational number to its size in cents
function p.cents(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.sign < 0 then
return nil
end
if a.inf and a.sign > 0 then
return 1 / 0
end
if a.zero then
return -1 / 0
end
 
local c = 0
for factor, power in pairs(a) do
if type(factor) == "number" then
c = c + power * utils.log2(factor)
end
end
return c * 1200
end
 
-- convert a rational number (interpreted as an interval) into Hz
function p.hz(a, base)
base = base or 440
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.sign < 0 then
return nil
end
if a.zero then
return 0
end
local log_hz = math.log(base)
for factor, power in pairs(a) do
if type(factor) == "number" then
log_hz = log_hz + power * math.log(factor)
end
end
return math.exp(log_hz)
end
 
-- FJS: x = a * 2^n : x >= 1, x < 2
local function red(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return nil
end
local b = p.copy(a)
 
-- start with an approximation
local log2 = p.log(b)
b = p.div(b, p.pow(2, math.floor(log2)))
 
while p.lt(b, 1) do
b = p.mul(b, 2)
end
while p.geq(b, 2) do
b = p.div(b, 2)
end
return b
end
 
-- FJS: x = a * 2^n : x >= 1/sqrt(2), x < sqrt(2)
local function reb(a)
local b = red(a)
if p.geq(p.mul(b, b), 2) then
b = p.div(b, 2)
end
return b
end
 
-- FJS: master algorithm
local function FJS_master(prime)
prime = red(prime)
local tolerance = p.new(65, 63)
local fifth = p.new(3, 2)
local k = 0
while true do
local a = red(p.pow(fifth, k))
if math.abs(p.cents(p.div(prime, a))) < p.cents(tolerance) then
return k
end
if k == 0 then
k = 1
elseif k > 0 then
k = -k
else
k = -k + 1
end
end
end
 
-- FJS: formal comma
local function formal_comma(prime)
local fifth_shift = FJS_master(prime)
return reb(p.div(prime, p.pow(3, fifth_shift)))
end
 
-- FJS representation of a rational number
-- might be a bit incorrect
-- TODO: confirm correctness
function p.as_FJS(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return nil
end
local b = p.copy(a)
local otonal = {}
local utonal = {}
for factor, power in pairs(a) do
if type(factor) == "number" and factor > 3 then
local comma = formal_comma(factor)
b = p.div(b, p.pow(comma, power))
if power > 0 then
for _ = 1, power do
table.insert(otonal, factor)
end
else
for _ = 1, -power do
table.insert(utonal, factor)
end
end
end
end
table.sort(otonal)
table.sort(utonal)
 
local fifths = b[3] or 0
 
local o = math.floor((fifths * 2 + 3) / 7)
local num = fifths * 11 + (b[2] or 0) * 7
if num >= 0 then
num = num + 1
else
num = num - 1
o = -o
end
 
local num_mod = (num - utils.signum(num)) % 7
local letter = ""
if (num_mod == 0 or num_mod == 3 or num_mod == 4) and o == 0 then
letter = "P"
elseif o == 1 then
letter = "M"
elseif o == -1 then
letter = "m"
else
if o >= 0 then
o = o - 1
else
o = o + 1
end
if o > 0 then
while o > 0 do
letter = letter .. "A"
o = o - 2
end
else
while o < 0 do
letter = letter .. "d"
o = o + 2
end
end
if #letter >= 5 then
letter = #letter .. letter:sub(1, 1)
end
end
 
local FJS = letter .. num
if #otonal > 0 then
FJS = FJS .. "^{" .. table.concat(otonal, ",") .. "}"
end
if #utonal > 0 then
FJS = FJS .. "_{" .. table.concat(utonal, ",") .. "}"
end
return FJS
end
 
-- determine log2 product complexity
function p.tenney_height(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return nil
end
local h = 0
for factor, power in pairs(a) do
if type(factor) == "number" then
h = h + math.abs(power) * utils.log2(factor)
end
end
return h
end
 
-- determine log2 max complexity
function p.weil_height(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return nil
end
local h1 = p.tenney_height(a)
local h2 = 0
for factor, power in pairs(a) do
if type(factor) == "number" then
h2 = h2 + power * utils.log2(factor)
end
end
h2 = math.abs(h2)
return h1 + h2
end
 
-- determine sopfr complexity
function p.wilson_height(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return nil
end
local h = 0
for factor, power in pairs(a) do
if type(factor) == "number" then
h = h + math.abs(power) * factor
end
end
return h
end
 
-- determine product complexity
function p.benedetti_height(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return nil
end
local n, m = p.as_pair(a)
if (math.log(n) + math.log(m)) / math.log(10) <= 15 then
return n * m
else
-- it is going to be an overflow
return nil
end
end
 
-- determine the number of rational divisors
function p.divisors(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return 0
end
local d = 1
for factor, power in pairs(a) do
if type(factor) == "number" then
d = d * (math.abs(power) + 1)
end
end
return d
end
 
-- determine whether the rational number is +- p/q, where p, q are primes OR 1
function p.is_prime_ratio(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero then
return false
end
local n_factors = 0
local m_factors = 0
for factor, power in pairs(a) do
if type(factor) == "number" then
if power > 0 then
n_factors = n_factors + 1
else
m_factors = m_factors + 1
end
end
end
return n_factors <= 1 and m_factors <= 1
end
 
-- return prime factorisation of a rational number
function p.factorisation(a)
if type(a) == "number" then
a = p.new(a)
end
if a.nan or a.inf or a.zero or p.eq(a, 1) or p.eq(a, -1) then
return "n/a"
end
local s = ""
if a.sign < 0 then
s = s .. "-"
end
local factors = {}
for factor, _ in pairs(a) do
if type(factor) == "number" then
table.insert(factors, factor)
end
end
table.sort(factors)
for i, factor in ipairs(factors) do
if i > 1 then
s = s .. " × "
end
s = s .. factor
if a[factor] ~= 1 then
s = s .. "<sup>" .. a[factor] .. "</sup>"
end
end
return s
end
 
-- return the subgroup generated by primes from a rational number's prime factorisation
function p.subgroup(a)
if type(a) == "number" then
a = p.new(a)
end
if p.eq(a, 1) then
return "1"
end
if a.nan or a.inf or a.zero or p.eq(a, -1) then
return "n/a"
end
local s = ""
local factors = {}
for factor, _ in pairs(a) do
if type(factor) == "number" then
table.insert(factors, factor)
end
end
table.sort(factors)
for i, factor in ipairs(factors) do
if i > 1 then
s = s .. "."
end
s = s .. factor
end
if a.sign < 0 then
s = "-1." .. s
end
return s
end
 
-- unpack rational as two return values (n, m)
function p.as_pair(a)
function p.as_pair(a)
if type(a) == 'number' then
if type(a) == "number" then
a = p.new(a)
a = p.new(a)
end
end
Line 244: Line 1,359:
local m = 1
local m = 1
for factor, power in pairs(a) do
for factor, power in pairs(a) do
if type(factor) == 'number' then
if type(factor) == "number" then
if power > 0 then
if power > 0 then
n = n * (factor ^ power)
n = n * (factor ^ power)
else
else
m = m * (factor ^ (-power))
m = m * (factor ^ -power)
end
end
end
end
Line 256: Line 1,371:
end
end


-- return a string ratio representation
function p.as_ratio(a, separator)
function p.as_ratio(a, separator)
separator = separator or '/'
separator = separator or "/"
local n, m = p.as_pair(a)
local n, m = p.as_pair(a)
return n .. separator .. m
return ("%d%s%d"):format(n, separator, m)
end
end


-- return the {n, m} pair as a Lua table
-- return the {n, m} pair as a Lua table
function p.as_table(a)
function p.as_table(a)
return {p.as_pair(a)}
return { p.as_pair(a) }
end
end


Line 273: Line 1,389:
end
end


-- return a rational number in ket notation
-- return a rational number in subgroup ket notation
-- NaN, infinity, zero values use special representations
function p.as_subgroup_ket(a, frame)
function p.as_ket(a, frame)
if type(a) == "number" then
if type(a) == 'number' then
a = p.new(a)
a = p.new(a)
end
end
-- special case: NaN
if a.nan or a.inf or a.zero or a.sign < 0 then
if a.nan then
return "n/a"
return 'NaN'
end
end
-- special case: infinity
local factors = {}
if a.inf then
for factor, _ in pairs(a) do
local sign = '+'
if type(factor) == "number" then
if a.sign < 0 then
table.insert(factors, factor)
sign = '-'
end
end
return sign .. '∞'
end
end
-- special case: zero
table.sort(factors)
if a.zero then
local subgroup = "1"
return '0'
if not p.eq(a, 1) then
subgroup = table.concat(factors, ".")
end
 
local powers = {}
for _, factor in ipairs(factors) do
table.insert(powers, a[factor])
end
local template_arg = "0"
if not p.eq(a, 1) then
template_arg = table.concat(powers, " ")
end
 
return subgroup .. " " .. frame:expandTemplate({
title = "Monzo",
args = { template_arg },
})
end
 
-- return a string of a rational number in monzo notation
-- calling Template: Monzo
function p.as_ket(a, frame, skip_many_zeros, only_numbers)
if skip_many_zeros == nil then
skip_many_zeros = true
end
only_numbers = only_numbers or false
if type(a) == "number" then
a = p.new(a)
end
end
-- regular case: not NaN, not infinity, not zero
local s = ''
-- special cases
if a.sign < 0 then
if a.nan or a.inf or a.zero or a.sign < 0 then
s = s .. '-'
return "n/a"
end
end
-- regular case: positive finite ratio
local s = ""
-- preparing the argument
-- preparing the argument
local largest_prime = -1
local max_prime = p.max_prime(a)
for factor, power in pairs(a) do
local template_arg = ""
if type(factor) == 'number' then
local template_arg_without_trailing_zeros = ""
if factor > largest_prime then
local zeros_n = 0
largest_prime = factor
for i = 2, max_prime do
if utils.is_prime(i) then
if i > 2 then
template_arg = template_arg .. " "
end
template_arg = template_arg .. (a[i] or 0)
 
if (a[i] or 0) ~= 0 then
if skip_many_zeros and zeros_n >= 4 then
template_arg = template_arg_without_trailing_zeros
if #template_arg > 0 then
template_arg = template_arg .. " "
end
template_arg = template_arg .. "0<sup>" .. zeros_n .. "</sup> " .. (a[i] or 0)
end
zeros_n = 0
template_arg_without_trailing_zeros = template_arg
else
zeros_n = zeros_n + 1
end
end
end
end
end
end
local template_arg = ''
if #template_arg == 0 then
for i = 2, largest_prime do
template_arg = "0"
if u.is_prime(i) then
end
if i > 2 then template_arg = template_arg .. ' ' end
if only_numbers then
template_arg = template_arg .. (a[i] or 0)
s = s .. template_arg
end
else
s = s .. frame:expandTemplate({
title = "Monzo",
args = { template_arg },
})
end
end
s = s .. frame:expandTemplate{
title = 'Monzo',
args = {template_arg}
}
return s
return s
end
end
Line 327: Line 1,487:
-- returns nil on failure
-- returns nil on failure
function p.parse(unparsed)
function p.parse(unparsed)
if type(unparsed) ~= "string" then
return nil
end
-- removing whitespaces
unparsed = unparsed:gsub("%s", "")
-- removing <br> and <br/> tags
unparsed = unparsed:gsub("<br/?>", "")
-- length limit: very long strings are not converted into Lua numbers correctly
local max_length = 15
-- rational form
-- rational form
local sign, n, _m, m = unparsed:match('^%s*(%-?)%s*(%d+)%s*(/%s*(%d+))%s*$')
local sign, n, _, m = unparsed:match("^%s*(%-?)%s*(%d+)%s*(/%s*(%d+))%s*$")
if n == nil then
if n == nil then
-- integer form
-- integer form
sign, n = unparsed:match('^%s*(%-?)%s*(%d+)%s*$')
sign, n = unparsed:match("^%s*(%-?)%s*(%d+)%s*$")
if n == nil then
if n == nil then
-- parsing failure
-- parsing failure
Line 337: Line 1,508:
else
else
m = 1
m = 1
if #n > max_length then
return nil
end
n = tonumber(n)
n = tonumber(n)
if #sign > 0 then
if #sign > 0 then
Line 343: Line 1,517:
end
end
else
else
if #n > max_length then
return nil
end
n = tonumber(n)
n = tonumber(n)
if #m > max_length then
return nil
end
m = tonumber(m)
m = tonumber(m)
if #sign > 0 then
if #sign > 0 then
Line 354: Line 1,534:
-- a version of as_ket() that can be {{#invoke:}}d
-- a version of as_ket() that can be {{#invoke:}}d
function p.ket(frame)
function p.ket(frame)
local unparsed = frame.args[1] or '1'
local unparsed = frame.args[1] or "1"
local result = ""
local a = p.parse(unparsed)
local a = p.parse(unparsed)
if a == nil then
if a == nil then
return '<span style="color:red;">Invalid rational number: ' .. unparsed .. '.</span>'
result = '{{error|Invalid rational number: ' .. unparsed .. ".}}"
else
result = p.as_ket(a, frame)
end
end
return p.as_ket(a, frame)
return frame:preprocess(result)
end
end
p.monzo = p.ket


return p
return p

Latest revision as of 13:18, 1 June 2025

Module documentation[view] [edit] [history] [purge]
Todo: add documentation

local p = {}

local seq = require("Module:Sequence")
local utils = require("Module:Utils")

-- enter a numerator n and denominator m
-- returns a table of prime factors
-- similar to a monzo, but the indices are prime numbers. 
function p.new(n, m)
	m = m or 1
	if n == 0 and m == 0 then
		return { nan = true }
	elseif n == 0 then
		return { zero = true, sign = utils.signum(m) }
	elseif m == 0 then
		return { inf = true, sign = utils.signum(n) }
	end
	local sign = utils.signum(n) * utils.signum(m)
	-- ensure n and m are positive
	n = n * utils.signum(n)
	m = m * utils.signum(m)
	-- factorize n and m separately
	local n_factors = utils.prime_factorization_raw(n)
	local m_factors = utils.prime_factorization_raw(m)
	local factors = n_factors
	factors.sign = sign
	-- subtract the factors of m from the factors of n
	for factor, power in pairs(m_factors) do
		factors[factor] = factors[factor] or 0
		factors[factor] = factors[factor] - power
		if factors[factor] == 0 then
			factors[factor] = nil -- clear the zeros
		end
	end
	return factors
end

-- copy a rational number
function p.copy(a)
	local b = {}
	for factor, power in pairs(a) do
		b[factor] = power
	end
	return b
end

-- create a rational number from continued fraction array
function p.from_continued_fraction(data)
	local val = p.new(1, 0)
	for i = #data, 1, -1 do
		val = p.add(data[i], p.inv(val))
	end
	return val
end

-- create a rational number from a string of whitespace-separated integers
function p.from_ket(s)
	local factor = 1
	local a = { sign = 1 }
	for i in s:gmatch("%S+") do
		local power = tonumber(i)
		if power == nil then
			return nil
		end

		-- find the next prime
		factor = factor + 1
		while not utils.is_prime(factor) do
			factor = factor + 1
		end

		if power ~= 0 then
			a[factor] = power
		end
	end
	return a
end

-- list convergents to `x` with a given stop condition
-- `stop` is either a number or a function of rational numbers
function p.convergents(x, stop)
	local convergents = {}
	local data = {}
	local i = 0
	while true do
		local n = math.floor(x)
		table.insert(data, n)
		local frac = p.from_continued_fraction(data)
		if type(stop) == "function" and stop(frac) then
			break
		elseif type(stop) == "number" and i >= stop then
			break
		end
		table.insert(convergents, frac)
		x = x - n
		if x == 0 then
			break
		end
		x = 1 / x
		i = i + 1
	end
	return convergents
end

-- determine whether a rational number is a convergent or a semiconvergent to `x`
-- TODO: document how this works
function p.converges(a, x)
	local _, m_a = p.as_pair(a)
	local convergents = p.convergents(x, function(b)
		local _, m_b = p.as_pair(b)
		return m_b >= m_a * 10000
	end)
	for _, b in ipairs(convergents) do
		if p.eq(a, b) then
			return "convergent"
		end
	end

	for i = 2, #convergents - 1 do
		local n_delta, m_delta = p.as_pair(convergents[i])
		local n_c, m_c = p.as_pair(convergents[i - 1])
		while true do
			n_c = n_c + n_delta
			m_c = m_c + m_delta
			local c = p.new(n_c, m_c)
			if p.as_table(c)[2] >= p.as_table(convergents[i + 1])[2] then
				break
			end
			if p.eq(a, c) then
				return "semiconvergent"
			end
		end
	end
	return false
end

-- attempt to identify the ratio as a simple S-expression
-- returns a table of matched expressions
function p.find_S_expression(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero or a.sign < 0 then
		return {}
	end
	if p.eq(a, 1) then
		return {}
	end
	local max_prime = p.max_prime(a)
	if seq.square_superparticulars[max_prime] == nil then
		return {}
	end
	local expressions = {}
	local superparticular_indices = {}
	local superparticular_ratios = {}
	for _, k_array in pairs(seq.square_superparticulars) do
		for _, k in ipairs(k_array) do
			if k <= 1000 then
				table.insert(superparticular_indices, k)

				local Sk_num = p.pow(p.new(k), 2)
				local Sk_den = p.mul(k - 1, k + 1)
				local Sk = p.div(Sk_num, Sk_den)
				superparticular_ratios[k] = Sk
			end
		end
	end

	-- is it Sk?
	for _, k in ipairs(superparticular_indices) do
		if p.eq(a, superparticular_ratios[k]) then
			table.insert(expressions, "S" .. k)
		end
	end

	-- is it Sk*S(k+1) or Sk/S(k+1) or Sk^2*S(k+1) or Sk*S(k+1)^2?
	for _, k in ipairs(superparticular_indices) do
		local r1 = superparticular_ratios[k]
		local r2 = superparticular_ratios[k + 1]
		if r1 and r2 then
			if p.eq(a, p.mul(r1, r2)) then
				table.insert(expressions, "S" .. k .. " × S" .. (k + 1))
			end
			if p.eq(a, p.div(r1, r2)) then
				table.insert(expressions, "S" .. k .. " / S" .. (k + 1))
			end
			if p.eq(a, p.mul(p.pow(r1, 2), r2)) then
				table.insert(expressions, "S" .. k .. "<sup>2</sup> × S" .. (k + 1))
			end
			if p.eq(a, p.mul(r1, p.pow(r2, 2))) then
				table.insert(expressions, "S" .. k .. " * S" .. (k + 1) .. "<sup>2</sup>")
			end
		end
	end

	-- is it Sk/S(k+2)?
	for _, k in ipairs(superparticular_indices) do
		local r1 = superparticular_ratios[k]
		local r2 = superparticular_ratios[k + 2]
		if r1 and r2 then
			if p.eq(a, p.div(r1, r2)) then
				table.insert(expressions, "S" .. k .. " / S" .. (k + 2))
			end
		end
	end

	-- is it S(k-1)*Sk*S(k+1)?
	for _, k in ipairs(superparticular_indices) do
		local r1 = superparticular_ratios[k - 1]
		local r2 = superparticular_ratios[k]
		local r3 = superparticular_ratios[k + 1]
		if r1 and r2 and r3 then
			if p.eq(a, p.mul(r1, p.mul(r2, r3))) then
				table.insert(expressions, "S" .. (k - 1) .. " × S" .. k .. " × S" .. (k + 1))
			end
		end
	end

	return expressions
end

-- multiply two rational numbers; integers are also allowed
function p.mul(a, b)
	if type(a) == "number" then
		a = p.new(a)
	end
	if type(b) == "number" then
		b = p.new(b)
	end
	-- special case: NaN
	if a.nan or b.nan then
		return { nan = true }
	end
	-- special case: infinities
	if (a.inf and not b.zero) or (b.inf and not a.zero) then
		return { inf = true, sign = a.sign * b.sign }
	end
	-- special case: infinity * zero
	if (a.inf and b.zero) or (b.inf and a.zero) then
		return { nan = true }
	end
	-- special case: zeros
	if a.zero or b.zero then
		return { zero = true, sign = a.sign * b.sign }
	end
	-- regular case: both not NaN, not infinities, not zeros
	local c = p.copy(a)
	for factor, power in pairs(b) do
		if type(factor) == "number" then
			c[factor] = c[factor] or 0
			c[factor] = c[factor] + power
			if c[factor] == 0 then
				c[factor] = nil
			end
		end
	end
	c.sign = a.sign * b.sign
	return c
end

-- compute 1/a for a rational number a; integers are also allowed
function p.inv(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	-- special case: NaN
	if a.nan then
		return { nan = true }
	end
	-- special case: infinity
	if a.inf then
		return { zero = true, sign = a.sign }
	end
	-- special case: zero
	if a.zero then
		return { inf = true, sign = a.sign }
	end
	-- regular case: not NaN, not infinity, not zero
	local b = {}
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			b[factor] = -power
		end
	end
	b.sign = a.sign
	return b
end

-- divide a rational number a by b; integers are also allowed
function p.div(a, b)
	return p.mul(a, p.inv(b))
end

-- compute a^b; b must be an integer
function p.pow(a, b)
	if type(a) == "number" then
		a = p.new(a)
	end
	if type(b) ~= "number" then
		return nil
	end
	if a.nan then
		return { nan = true }
	end
	if a.inf then
		if b == 0 then
			return { nan = true }
		elseif b > 0 then
			return { inf = true, sign = math.pow(a.sign, b) }
		else
			return { zero = true, sign = math.pow(a.sign, b) }
		end
	end
	if a.zero then
		if b == 0 then
			return p.new(1)
		elseif b > 0 then
			return { zero = true, sign = math.pow(a.sign, b) }
		else
			return { inf = true, sign = math.pow(a.sign, b) }
		end
	end
	local c = p.new(1)
	for _ = 1, math.abs(b) do
		if b > 0 then
			c = p.mul(c, a)
		else
			c = p.div(c, a)
		end
	end
	return c
end

-- compute a canonical representation of `a` modulo powers of `b`
-- TODO: describe the exact behavior
--       it seems bugged when the equave is a fraction
function p.modulo_mul(a, b)
	if type(a) == "number" then
		a = p.new(a)
	end
	if type(b) == "number" then
		b = p.new(b)
	end
	if a.nan or b.nan or a.inf or b.inf or a.zero or b.zero then
		return p.copy(a)
	end
	local neg_power = -math.huge
	local pos_power = math.huge
	for factor, power in pairs(b) do
		if type(factor) == "number" then
			if (power > 0 and (a[factor] or 0) >= 0) or (power < 0 and (a[factor] or 0) <= 0) then
				pos_power = math.min(pos_power, math.floor((a[factor] or 0) / power))
			else
				neg_power = math.max(neg_power, -math.ceil(math.abs(a[factor] or 0) / math.abs(power)))
			end
		end
	end
	local power = 0
	if neg_power ~= neg_power + 1 and neg_power < 0 then
		power = neg_power
	end
	if pos_power ~= pos_power + 1 and pos_power > 0 then
		power = pos_power
	end
	return p.div(a, p.pow(b, power))
end

-- add two rational numbers; integers are also allowed
function p.add(a, b)
	if type(a) == "number" then
		a = p.new(a)
	end
	if type(b) == "number" then
		b = p.new(b)
	end

	-- special case: NaN
	if a.nan or b.nan then
		return { nan = true }
	end
	-- special case: infinities
	if a.inf and b.inf then
		if a.sign == b.sign then
			return { inf = true, sign = a.sign }
		else
			return { nan = true }
		end
	end
	if a.inf then
		return { inf = true, sign = a.sign }
	end
	if b.inf then
		return { inf = true, sign = b.sign }
	end
	-- special case: one is zero
	if a.zero then
		return p.copy(b)
	end
	if b.zero then
		return p.copy(a)
	end
	-- regular case: both not NaN, not infinities, not zeros
	local gcd = { sign = 1 }
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if math.min(power, b[factor] or 0) > 0 then
				gcd[factor] = math.min(power, b[factor])
			end
			if math.max(power, b[factor] or 0) < 0 then
				gcd[factor] = math.max(power, b[factor])
			end
		end
	end
	a = p.div(a, gcd)
	b = p.div(b, gcd)

	local n_a, m_a = p.as_pair(a)
	local n_b, m_b = p.as_pair(b)

	local n = n_a * m_b + n_b * m_a
	local m = m_a * m_b

	return p.mul(p.new(n, m), gcd)
end

-- substract a rational number from another; integers are also allowed
function p.sub(a, b)
	return p.add(a, p.mul(b, -1))
end

-- absolute value of a rational number; integers are also allowed
function p.abs(a)
	if a.nan then
		return { nan = true }
	end
	local b = p.copy(a)
	b.sign = 1
	return b
end

-- determine whether a rational number is less than another; integers are also allowed
function p.lt(a, b)
	local c = p.sub(a, b)
	if c.zero then
		return false
	else
		return c.sign == -1
	end
end

-- determine whether a rational number is less or equal to the other; integers are also allowed
function p.leq(a, b)
	local c = p.sub(a, b)
	if c.zero then
		return true
	else
		return c.sign == -1
	end
end

-- determine whether a rational number is greater than another; integers are also allowed
function p.gt(a, b)
	local c = p.sub(a, b)
	if c.zero then
		return false
	else
		return c.sign == 1
	end
end

-- determine whether a rational number is greater or equal to the other; integers are also allowed
function p.geq(a, b)
	local c = p.sub(a, b)
	if c.zero then
		return true
	else
		return c.sign == 1
	end
end

-- determine whether a rational number is equal to another; integers are also allowed
function p.eq(a, b)
	if type(a) == "number" then
		a = p.new(a)
	end
	if type(b) == "number" then
		b = p.new(b)
	end
	if a.nan or b.nan then
		return false
	end
	if a.inf and b.inf then
		return a.sign == b.sign
	end
	if a.inf or b.inf then
		return false
	end
	if a.zero and b.zero then
		return true
	end
	if a.zero or b.zero then
		return false
	end
	for factor, power in pairs(a) do
		if b[factor] ~= power then
			return false
		end
	end
	for factor, power in pairs(b) do
		if a[factor] ~= power then
			return false
		end
	end
	return true
end

-- determine whether a rational number is integer
function p.is_int(a)
	if type(a) == "number" then
		return true
	end
	if a.nan then
		return false
	end
	if a.inf then
		return false
	end
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if power < 0 then
				return false
			end
		end
	end
	return true
end

-- determine whether a rational number lies within [1; equave)
function p.is_reduced(a, equave, large)
	equave = equave or 2
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero or a.sign < 0 then
		return false
	end
	if large then
		-- an approximation
		local cents = p.cents(a)
		local cents_max = p.cents(equave)
		return cents >= 0 and cents < cents_max
	else
		return p.geq(a, 1) and p.lt(a, equave)
	end
end

-- determine whether a rational number represents a harmonic. 
-- reduced: check for reduced harmonic instead. 
function p.is_harmonic(a, reduced, large)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero or a.sign < 0 then
		return false
	end
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if factor == 2 and reduced then
				-- pass (ignore factors of 2 for reduced harmonic check)
			elseif power < 0 then
				return false
			end
		end
	end
	if reduced then
		return p.is_reduced(a, 2, large)
	end
	return true
end

-- determine whether a rational number represents a subharmonic. 
-- reduced: check for reduced subharmonic instead. 
function p.is_subharmonic(a, reduced, large)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero or a.sign < 0 then
		return false
	end
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if factor == 2 and reduced then
				-- pass (ignore factors of 2 for reduced subharmonic check)
			elseif power > 0 then
				return false
			end
		end
	end
	if reduced then
		return p.is_reduced(a, 2, large)
	end
	return true
end

-- determine whether a rational number is an integer power of another rational number
function p.is_power(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return false
	end
	if p.eq(a, 1) or p.eq(a, -1) then
		return false
	end

	local total_power = nil
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if total_power then
				total_power = utils._gcd(total_power, math.abs(power))
			else
				total_power = math.abs(power)
			end
		end
	end
	return total_power > 1
end

-- determine whether a rational number is superparticular
function p.is_superparticular(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return false
	end
	local n, m = p.as_pair(a)
	return n - m == 1
end

-- determine whether a rational number is a square superparticular
function p.is_square_superparticular(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero or a.sign < 0 then
		return false
	end
	-- check the numerator
	local k = { sign = 1 }
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if power > 0 and power % 2 ~= 0 then
				return false
			elseif power > 0 then
				k[factor] = math.floor(power / 2 + 0.5)
			end
		end
	end
	-- check the denominator
	local den = p.mul(p.add(k, 1), p.sub(k, 1))
	return p.eq(a, p.div(p.pow(k, 2), den))
end

-- check if an integer is prime
function p.is_prime(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	
	-- nan, inf, zero, and negative numbers are not prime
	if a.nan or a.inf or a.zero or a.sign < 0 then
		return false
	end
	
	local flag = false -- flag for having exactly one prime factor
	for factor, power in pairs(a) do
		if type(factor) == "number" and power then
			if flag or power ~= 1 then
				return false
			else
				flag = true
			end
		end
	end
	return flag
end

-- check if an integer is highly composite
function p.is_highly_composite(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	
	-- nan, inf, zero, and negative numbers are not highly composite
	if a.nan or a.inf or a.zero or a.sign == -1 then
		return false
	end
	
	-- non-integers are not highly composite
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if power < 0 then
				return false
			end
		end
	end
	
	local last_power = 1 / 0
	local max_prime = p.max_prime(a)
	for i = 2, max_prime do
		if utils.is_prime(i) then
			-- factors must be the first N primes
			if a[i] == nil then
				return false
			end
			-- powers must form a non-increasing sequence
			if a[i] > last_power then
				return false
			end
			last_power = a[i]
		end
	end
	-- last_power may be >1 only for 1, 4, 36
	if last_power > 1 then
		return p.eq(a, 1) or p.eq(a, 4) or p.eq(a, 36)
	end

	-- now we actually check whether it is highly composite
	local n, _ = p.as_pair(a)

	-- precision is very important here
	local log2_n = 0
	local t = 1
	while t * 2 <= n do
		log2_n = log2_n + 1
		t = t * 2
	end

	local divisors = p.divisors(a)
	local diagram_size = log2_n
	local diagram = { log2_n }
	local primes = { 2 }

	local function eval_diagram(d)
		while #d > #primes do
			local i = primes[#primes] + 1
			while not utils.is_prime(i) do
				i = i + 1
			end
			table.insert(primes, i)
		end
		local m = 1
		for i = 1, #d do
			for _ = 1, d[i] do
				m = m * primes[i]
			end
		end
		return m
	end

	-- iterate factorisations of some composite integers <n
	while diagram do
		while eval_diagram(diagram) >= n do
			-- reduce diagram size, preserve diagram width
			if diagram_size <= #diagram then
				diagram = nil
				break
			end
			diagram_size = diagram_size - 1
			diagram[1] = diagram_size - #diagram + 1
			for i = 2, #diagram do
				diagram[i] = 1
			end
		end
		if diagram == nil then
			break
		end
		local diagram_divisors = 1
		for i = 1, #diagram do
			diagram_divisors = diagram_divisors * (diagram[i] + 1)
		end
		if diagram_divisors >= divisors then
			return false
		end
		diagram = utils.next_young_diagram(diagram)
	end
	return true
end

-- check if an integer is superabundant
function p.is_superabundant(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return false
	end
	-- negative numbers are not superabundant
	if a.sign == -1 then
		return false
	end
	-- non-integers are not superabundant
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if power < 0 then
				return false
			end
		end
	end
	local last_power = 1 / 0
	local max_prime = p.max_prime(a)
	local divisor_sum = p.new(1)
	for i = 2, max_prime do
		if utils.is_prime(i) then
			-- factors must be the first N primes
			if a[i] == nil then
				return false
			end
			-- powers must form a non-increasing sequence
			if a[i] > last_power then
				return false
			end
			last_power = a[i]
			divisor_sum = p.mul(divisor_sum, p.div(p.sub(p.pow(i, a[i] + 1), 1), i - 1))
		end
	end
	-- last_power may be >1 only for 1, 4, 36
	if last_power > 1 then
		return p.eq(a, 1) or p.eq(a, 4) or p.eq(a, 36)
	end

	-- now we actually check whether it is superabundant
	local n, _ = p.as_pair(a)

	-- precision is very important here
	local log2_n = 0
	local t = 1
	while t * 2 <= n do
		log2_n = log2_n + 1
		t = t * 2
	end

	local SA_ratio = p.div(divisor_sum, a)
	local diagram_size = log2_n
	local diagram = { log2_n }
	local primes = { 2 }

	local function eval_diagram(d)
		while #d > #primes do
			local i = primes[#primes] + 1
			while not utils.is_prime(i) do
				i = i + 1
			end
			table.insert(primes, i)
		end
		local m = 1
		for i = 1, #d do
			for _ = 1, d[i] do
				m = m * primes[i]
			end
		end
		return m
	end

	-- iterate factorisations of some composite integers <n
	while diagram do
		while eval_diagram(diagram) >= n do
			-- reduce diagram size, preserve diagram width
			if diagram_size <= #diagram then
				diagram = nil
				break
			end
			diagram_size = diagram_size - 1
			diagram[1] = diagram_size - #diagram + 1
			for i = 2, #diagram do
				diagram[i] = 1
			end
		end
		if diagram == nil then
			break
		end
		local diagram_divisor_sum = 1
		for i = 1, #diagram do
			diagram_divisor_sum =
				p.mul(diagram_divisor_sum, p.div(p.sub(p.pow(primes[i], diagram[i] + 1), 1), primes[i] - 1))
		end
		local diagram_SA_ratio = p.div(diagram_divisor_sum, eval_diagram(diagram))
		if p.geq(diagram_SA_ratio, SA_ratio) then
			return false
		end
		diagram = utils.next_young_diagram(diagram)
	end
	return true
end

-- Check if ratio is within an int limit; that is, neither its numerator nor
-- denominator exceed that limit.
function p.is_within_int_limit(a, lim)
	return p.int_limit(a) <= lim
end

-- Find integer limit of a ratio
-- For a ratio p/q, this is simply max(p, q)
function p.int_limit(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return nil
	end
	local a_copy = p.copy(a)
	local num, den = p.as_pair(a_copy)
	return math.max(num, den)
end

-- Find odd limit of a ratio
-- For a ratio p/q, this is simply max(p, q) where powers of 2 are ignored
function p.odd_limit(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return nil
	end
	local a_copy = p.copy(a)
	if a_copy[2] ~= nil then
		a_copy[2] = 0
	end
	local num, den = p.as_pair(a_copy)
	return math.max(num, den)
end

-- find max prime involved in the factorisation
-- (a.k.a. prime limit or harmonic class) of a rational number
function p.max_prime(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return nil
	end
	local max_factor = 0
	for factor, _ in pairs(a) do
		if type(factor) == "number" then
			if factor > max_factor then
				max_factor = factor
			end
		end
	end
	return max_factor
end

-- convert a rational number to its size in octaves
-- equal to log2 of the rational number
function p.log(a, base)
	base = base or 2
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.inf and a.sign > 0 then
		return 1 / 0
	end
	if a.nan or a.inf then
		return nil
	end
	if a.zero then
		return -1 / 0
	end
	if a.sign < 0 then
		return nil
	end
	local logarithm = 0
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			logarithm = logarithm + power * utils._log(factor, base)
		end
	end
	return logarithm
end

-- convert a rational number to its size in cents
function p.cents(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.sign < 0 then
		return nil
	end
	if a.inf and a.sign > 0 then
		return 1 / 0
	end
	if a.zero then
		return -1 / 0
	end

	local c = 0
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			c = c + power * utils.log2(factor)
		end
	end
	return c * 1200
end

-- convert a rational number (interpreted as an interval) into Hz
function p.hz(a, base)
	base = base or 440
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.sign < 0 then
		return nil
	end
	if a.zero then
		return 0
	end
	local log_hz = math.log(base)
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			log_hz = log_hz + power * math.log(factor)
		end
	end
	return math.exp(log_hz)
end

-- FJS: x = a * 2^n : x >= 1, x < 2
local function red(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return nil
	end
	local b = p.copy(a)

	-- start with an approximation
	local log2 = p.log(b)
	b = p.div(b, p.pow(2, math.floor(log2)))

	while p.lt(b, 1) do
		b = p.mul(b, 2)
	end
	while p.geq(b, 2) do
		b = p.div(b, 2)
	end
	return b
end

-- FJS: x = a * 2^n : x >= 1/sqrt(2), x < sqrt(2)
local function reb(a)
	local b = red(a)
	if p.geq(p.mul(b, b), 2) then
		b = p.div(b, 2)
	end
	return b
end

-- FJS: master algorithm
local function FJS_master(prime)
	prime = red(prime)
	local tolerance = p.new(65, 63)
	local fifth = p.new(3, 2)
	local k = 0
	while true do
		local a = red(p.pow(fifth, k))
		if math.abs(p.cents(p.div(prime, a))) < p.cents(tolerance) then
			return k
		end
		if k == 0 then
			k = 1
		elseif k > 0 then
			k = -k
		else
			k = -k + 1
		end
	end
end

-- FJS: formal comma
local function formal_comma(prime)
	local fifth_shift = FJS_master(prime)
	return reb(p.div(prime, p.pow(3, fifth_shift)))
end

-- FJS representation of a rational number
-- might be a bit incorrect
-- TODO: confirm correctness
function p.as_FJS(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return nil
	end
	local b = p.copy(a)
	local otonal = {}
	local utonal = {}
	for factor, power in pairs(a) do
		if type(factor) == "number" and factor > 3 then
			local comma = formal_comma(factor)
			b = p.div(b, p.pow(comma, power))
			if power > 0 then
				for _ = 1, power do
					table.insert(otonal, factor)
				end
			else
				for _ = 1, -power do
					table.insert(utonal, factor)
				end
			end
		end
	end
	table.sort(otonal)
	table.sort(utonal)

	local fifths = b[3] or 0

	local o = math.floor((fifths * 2 + 3) / 7)
	local num = fifths * 11 + (b[2] or 0) * 7
	if num >= 0 then
		num = num + 1
	else
		num = num - 1
		o = -o
	end

	local num_mod = (num - utils.signum(num)) % 7
	local letter = ""
	if (num_mod == 0 or num_mod == 3 or num_mod == 4) and o == 0 then
		letter = "P"
	elseif o == 1 then
		letter = "M"
	elseif o == -1 then
		letter = "m"
	else
		if o >= 0 then
			o = o - 1
		else
			o = o + 1
		end
		if o > 0 then
			while o > 0 do
				letter = letter .. "A"
				o = o - 2
			end
		else
			while o < 0 do
				letter = letter .. "d"
				o = o + 2
			end
		end
		if #letter >= 5 then
			letter = #letter .. letter:sub(1, 1)
		end
	end

	local FJS = letter .. num
	if #otonal > 0 then
		FJS = FJS .. "^{" .. table.concat(otonal, ",") .. "}"
	end
	if #utonal > 0 then
		FJS = FJS .. "_{" .. table.concat(utonal, ",") .. "}"
	end
	return FJS
end

-- determine log2 product complexity
function p.tenney_height(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return nil
	end
	local h = 0
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			h = h + math.abs(power) * utils.log2(factor)
		end
	end
	return h
end

-- determine log2 max complexity
function p.weil_height(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return nil
	end
	local h1 = p.tenney_height(a)
	local h2 = 0
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			h2 = h2 + power * utils.log2(factor)
		end
	end
	h2 = math.abs(h2)
	return h1 + h2
end

-- determine sopfr complexity
function p.wilson_height(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return nil
	end
	local h = 0
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			h = h + math.abs(power) * factor
		end
	end
	return h
end

-- determine product complexity
function p.benedetti_height(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return nil
	end
	local n, m = p.as_pair(a)
	if (math.log(n) + math.log(m)) / math.log(10) <= 15 then
		return n * m
	else
		-- it is going to be an overflow
		return nil
	end
end

-- determine the number of rational divisors
function p.divisors(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return 0
	end
	local d = 1
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			d = d * (math.abs(power) + 1)
		end
	end
	return d
end

-- determine whether the rational number is +- p/q, where p, q are primes OR 1
function p.is_prime_ratio(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero then
		return false
	end
	local n_factors = 0
	local m_factors = 0
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if power > 0 then
				n_factors = n_factors + 1
			else
				m_factors = m_factors + 1
			end
		end
	end
	return n_factors <= 1 and m_factors <= 1
end

-- return prime factorisation of a rational number
function p.factorisation(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero or p.eq(a, 1) or p.eq(a, -1) then
		return "n/a"
	end
	local s = ""
	if a.sign < 0 then
		s = s .. "-"
	end
	local factors = {}
	for factor, _ in pairs(a) do
		if type(factor) == "number" then
			table.insert(factors, factor)
		end
	end
	table.sort(factors)
	for i, factor in ipairs(factors) do
		if i > 1 then
			s = s .. " × "
		end
		s = s .. factor
		if a[factor] ~= 1 then
			s = s .. "<sup>" .. a[factor] .. "</sup>"
		end
	end
	return s
end

-- return the subgroup generated by primes from a rational number's prime factorisation
function p.subgroup(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	if p.eq(a, 1) then
		return "1"
	end
	if a.nan or a.inf or a.zero or p.eq(a, -1) then
		return "n/a"
	end
	local s = ""
	local factors = {}
	for factor, _ in pairs(a) do
		if type(factor) == "number" then
			table.insert(factors, factor)
		end
	end
	table.sort(factors)
	for i, factor in ipairs(factors) do
		if i > 1 then
			s = s .. "."
		end
		s = s .. factor
	end
	if a.sign < 0 then
		s = "-1." .. s
	end
	return s
end

-- unpack rational as two return values (n, m)
function p.as_pair(a)
	if type(a) == "number" then
		a = p.new(a)
	end
	-- special case: NaN
	if a.nan then
		return 0, 0
	end
	-- special case: infinity
	if a.inf then
		return a.sign, 0
	end
	-- special case: zero
	if a.zero then
		return 0, a.sign
	end
	-- regular case: not NaN, not infinity, not zero
	local n = 1
	local m = 1
	for factor, power in pairs(a) do
		if type(factor) == "number" then
			if power > 0 then
				n = n * (factor ^ power)
			else
				m = m * (factor ^ -power)
			end
		end
	end
	n = n * a.sign
	return n, m
end

-- return a string ratio representation
function p.as_ratio(a, separator)
	separator = separator or "/"
	local n, m = p.as_pair(a)
	return ("%d%s%d"):format(n, separator, m)
end

-- return the {n, m} pair as a Lua table
function p.as_table(a)
	return { p.as_pair(a) }
end

-- return n / m as a float approximation
function p.as_float(a)
	local n, m = p.as_pair(a)
	return n / m
end

-- return a rational number in subgroup ket notation
function p.as_subgroup_ket(a, frame)
	if type(a) == "number" then
		a = p.new(a)
	end
	if a.nan or a.inf or a.zero or a.sign < 0 then
		return "n/a"
	end
	local factors = {}
	for factor, _ in pairs(a) do
		if type(factor) == "number" then
			table.insert(factors, factor)
		end
	end
	table.sort(factors)
	local subgroup = "1"
	if not p.eq(a, 1) then
		subgroup = table.concat(factors, ".")
	end

	local powers = {}
	for _, factor in ipairs(factors) do
		table.insert(powers, a[factor])
	end
	local template_arg = "0"
	if not p.eq(a, 1) then
		template_arg = table.concat(powers, " ")
	end

	return subgroup .. " " .. frame:expandTemplate({
		title = "Monzo",
		args = { template_arg },
	})
end

-- return a string of a rational number in monzo notation
-- calling Template: Monzo
function p.as_ket(a, frame, skip_many_zeros, only_numbers)
	if skip_many_zeros == nil then
		skip_many_zeros = true
	end
	only_numbers = only_numbers or false
	if type(a) == "number" then
		a = p.new(a)
	end
	
	-- special cases
	if a.nan or a.inf or a.zero or a.sign < 0 then
		return "n/a"
	end
	
	-- regular case: positive finite ratio
	local s = ""

	-- preparing the argument
	local max_prime = p.max_prime(a)
	local template_arg = ""
	local template_arg_without_trailing_zeros = ""
	local zeros_n = 0
	for i = 2, max_prime do
		if utils.is_prime(i) then
			if i > 2 then
				template_arg = template_arg .. " "
			end
			template_arg = template_arg .. (a[i] or 0)

			if (a[i] or 0) ~= 0 then
				if skip_many_zeros and zeros_n >= 4 then
					template_arg = template_arg_without_trailing_zeros
					if #template_arg > 0 then
						template_arg = template_arg .. " "
					end
					template_arg = template_arg .. "0<sup>" .. zeros_n .. "</sup> " .. (a[i] or 0)
				end
				zeros_n = 0
				template_arg_without_trailing_zeros = template_arg
			else
				zeros_n = zeros_n + 1
			end
		end
	end
	if #template_arg == 0 then
		template_arg = "0"
	end
	if only_numbers then
		s = s .. template_arg
	else
		s = s .. frame:expandTemplate({
			title = "Monzo",
			args = { template_arg },
		})
	end
	return s
end

-- parse a rational number
-- returns nil on failure
function p.parse(unparsed)
	if type(unparsed) ~= "string" then
		return nil
	end
	-- removing whitespaces
	unparsed = unparsed:gsub("%s", "")
	-- removing <br> and <br/> tags
	unparsed = unparsed:gsub("<br/?>", "")

	-- length limit: very long strings are not converted into Lua numbers correctly
	local max_length = 15

	-- rational form
	local sign, n, _, m = unparsed:match("^%s*(%-?)%s*(%d+)%s*(/%s*(%d+))%s*$")
	if n == nil then
		-- integer form
		sign, n = unparsed:match("^%s*(%-?)%s*(%d+)%s*$")
		if n == nil then
			-- parsing failure
			return nil
		else
			m = 1
			if #n > max_length then
				return nil
			end
			n = tonumber(n)
			if #sign > 0 then
				n = -n
			end
		end
	else
		if #n > max_length then
			return nil
		end
		n = tonumber(n)
		if #m > max_length then
			return nil
		end
		m = tonumber(m)
		if #sign > 0 then
			n = -n
		end
	end
	return p.new(n, m)
end

-- a version of as_ket() that can be {{#invoke:}}d
function p.ket(frame)
	local unparsed = frame.args[1] or "1"
	local result = ""
	
	local a = p.parse(unparsed)
	if a == nil then
		result = '{{error|Invalid rational number: ' .. unparsed .. ".}}"
	else
		result = p.as_ket(a, frame)
	end
	
	return frame:preprocess(result)
end
p.monzo = p.ket

return p