30/17: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>Andrew_Heathwaite
**Imported revision 283165444 - Original comment: **
 
We finally have a clearer modifier to describe this interval
 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox Interval
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| Name = diatismic minor seventh
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-12-07 02:29:12 UTC</tt>.<br>
| Color name = 17uy6, suyo 6th
: The original revision id was <tt>283165444</tt>.<br>
| Sound = jid_30_17_pluck_adu_dr220.mp3
: The revision comment was: <tt></tt><br>
}}
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
In [[17-limit]] [[just intonation]], '''30/17''' is the '''diatismic minor seventh''', measuring about 983.3{{cent}}. It falls short of the [[16/9|Pythagorean minor seventh (16/9)]] by a [[136/135|diatisma (136/135)]], hence the name. It is the [[mediant]] of [[7/4]] and [[23/13]]. Its inversion is [[17/15]], the "septendecimal whole tone"; both of these intervals are well approximated in [[22edo]] (18\22, 4\22).
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">In [[17-limit]] [[Just Intonation]], 30/17 is the "septendecimal minor seventh," measuring about 983.313¢. It is the [[mediant]] between [[7_4|7/4]] and [[23_13|23/13]]. Its inversion is [[17_15|17/15]], the "septendecimal whole tone" -- both of these intervals are well-approximated in [[22edo]].


See: [[Gallery of Just Intervals]]</pre></div>
== See also ==
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;30_17&lt;/title&gt;&lt;/head&gt;&lt;body&gt;In &lt;a class="wiki_link" href="/17-limit"&gt;17-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt;, 30/17 is the &amp;quot;septendecimal minor seventh,&amp;quot; measuring about 983.313¢. It is the &lt;a class="wiki_link" href="/mediant"&gt;mediant&lt;/a&gt; between &lt;a class="wiki_link" href="/7_4"&gt;7/4&lt;/a&gt; and &lt;a class="wiki_link" href="/23_13"&gt;23/13&lt;/a&gt;. Its inversion is &lt;a class="wiki_link" href="/17_15"&gt;17/15&lt;/a&gt;, the &amp;quot;septendecimal whole tone&amp;quot; -- both of these intervals are well-approximated in &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt;.&lt;br /&gt;
* [[17/15]] its [[octave complement]]
&lt;br /&gt;
* [[Gallery of just intervals]]
See: &lt;a class="wiki_link" href="/Gallery%20of%20Just%20Intervals"&gt;Gallery of Just Intervals&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
 
[[Category:Seventh]]
[[Category:Minor seventh]]
[[Category:Diatismic]]

Latest revision as of 13:45, 1 June 2024

Interval information
Ratio 30/17
Factorization 2 × 3 × 5 × 17-1
Monzo [1 1 1 0 0 0 -1
Size in cents 983.3133¢
Name diatismic minor seventh
Color name 17uy6, suyo 6th
FJS name [math]\displaystyle{ \text{A6}^{5}_{17} }[/math]
Special properties reduced
Tenney height (log2 nd) 8.99435
Weil height (log2 max(n, d)) 9.81378
Wilson height (sopfr(nd)) 27

[sound info]
Open this interval in xen-calc

In 17-limit just intonation, 30/17 is the diatismic minor seventh, measuring about 983.3 ¢. It falls short of the Pythagorean minor seventh (16/9) by a diatisma (136/135), hence the name. It is the mediant of 7/4 and 23/13. Its inversion is 17/15, the "septendecimal whole tone"; both of these intervals are well approximated in 22edo (18\22, 4\22).

See also