Lumatone mapping for 21edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Inthar (talk | contribs)
No edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
A [[5L 3s]]-based mapping for [[21edo]]:
{{Lumatone mapping intro}}


{{Lumatone EDO mapping|n=21|start=0|xstep=3|ystep=-1}}
== Whitewood ==
The [[Whitewood]] mapping is the one that functions in the closest way to the familiar diatonic scale.
{{Lumatone EDO mapping|n=21|start=17|xstep=3|ystep=-1}}
 
== Gorgo ==
Since the 7th harmonic is the lowest one that is accurately tuned, the [[gorgo]] mapping works well for creating consonant combinations of notes, and also has a wider range.
{{Lumatone EDO mapping|n=21|start=3|xstep=4|ystep=1}}
 
 
Or this inverted version of the above, which is based on the [[4L 5s]] scale:
{{Lumatone EDO mapping|n=21|start=9|xstep=5|ystep=-4}}
 
{{Navbox Lumatone}}

Latest revision as of 14:43, 23 March 2025

There are many conceivable ways to map 21edo onto the onto the Lumatone keyboard. However, it has 3 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them.

Whitewood

The Whitewood mapping is the one that functions in the closest way to the familiar diatonic scale.

17
20
19
1
4
7
10
18
0
3
6
9
12
15
18
20
2
5
8
11
14
17
20
2
5
8
19
1
4
7
10
13
16
19
1
4
7
10
13
16
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
9
12
15
18
0
3
6
11
14
17
20
2
5
8
11
14
17
20
2
5
8
11
14
17
20
2
5
1
4
7
10
13
16
19
1
4
7
10
13
16
19
1
4
7
9
12
15
18
0
3
6
9
12
15
18
0
3
6
20
2
5
8
11
14
17
20
2
5
8
7
10
13
16
19
1
4
7
18
0
3
6
9
5
8

Gorgo

Since the 7th harmonic is the lowest one that is accurately tuned, the gorgo mapping works well for creating consonant combinations of notes, and also has a wider range.

3
7
8
12
16
20
3
9
13
17
0
4
8
12
16
14
18
1
5
9
13
17
0
4
8
12
15
19
2
6
10
14
18
1
5
9
13
17
0
4
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
17
0
4
8
12
16
20
3
7
11
15
19
2
6
10
14
18
1
5
9
13
4
8
12
16
20
3
7
11
15
19
2
6
10
14
0
4
8
12
16
20
3
7
11
15
19
13
17
0
4
8
12
16
20
9
13
17
0
4
1
5


Or this inverted version of the above, which is based on the 4L 5s scale:

9
14
10
15
20
4
9
6
11
16
0
5
10
15
20
7
12
17
1
6
11
16
0
5
10
15
3
8
13
18
2
7
12
17
1
6
11
16
0
5
4
9
14
19
3
8
13
18
2
7
12
17
1
6
11
16
0
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
17
1
6
11
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
17
1
6
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
17
3
8
13
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
14
19
3
8
13
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
9
14
19
3
8
13
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
20
4
9
14
19
3
8
13
18
2
7
12
17
1
6
11
16
0
5
10
15
20
4
9
14
19
3
8
13
18
2
7
12
17
1
6
11
5
10
15
20
4
9
14
19
3
8
13
18
2
7
0
5
10
15
20
4
9
14
19
3
8
11
16
0
5
10
15
20
4
6
11
16
0
5
17
1


ViewTalkEditLumatone mappings 
18edo19edo20edoLumatone mapping for 21edo22edo23edo24edo